These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 31513185)
41. Ruthenium-Picolylamine-Incorporated Mixed-Linker MOFs: Highly Active Heterogeneous Catalysts for Olefin and Aldehyde Hydrogenation. Almeida LD; Anbari WH; Gong X; Poloneeva D; Meijerink M; Cerillo JL; Garzon-Tovar L; Gascon J ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38079363 [TBL] [Abstract][Full Text] [Related]
42. Polydimethylsiloxane Coating for a Palladium/MOF Composite: Highly Improved Catalytic Performance by Surface Hydrophobization. Huang G; Yang Q; Xu Q; Yu SH; Jiang HL Angew Chem Int Ed Engl; 2016 Jun; 55(26):7379-83. PubMed ID: 27144320 [TBL] [Abstract][Full Text] [Related]
43. Hollow metal-organic framework nanospheres via emulsion-based interfacial synthesis and their application in size-selective catalysis. Yang Y; Wang F; Yang Q; Hu Y; Yan H; Chen YZ; Liu H; Zhang G; Lu J; Jiang HL; Xu H ACS Appl Mater Interfaces; 2014 Oct; 6(20):18163-71. PubMed ID: 25247890 [TBL] [Abstract][Full Text] [Related]
44. In Situ Generation and Stabilization of Accessible Cu/Cu Chen K; Ling JL; Wu CD Angew Chem Int Ed Engl; 2020 Jan; 59(5):1925-1931. PubMed ID: 31755200 [TBL] [Abstract][Full Text] [Related]
45. Encapsulation of Bimetallic Metal Nanoparticles into Robust Zirconium-Based Metal-Organic Frameworks: Evaluation of the Catalytic Potential for Size-Selective Hydrogenation. Rösler C; Dissegna S; Rechac VL; Kauer M; Guo P; Turner S; Ollegott K; Kobayashi H; Yamamoto T; Peeters D; Wang Y; Matsumura S; Van Tendeloo G; Kitagawa H; Muhler M; Llabrés I Xamena FX; Fischer RA Chemistry; 2017 Mar; 23(15):3583-3594. PubMed ID: 27922204 [TBL] [Abstract][Full Text] [Related]
46. Locking Effect in Metal@MOF with Superior Stability for Highly Chemoselective Catalysis. Zhong Y; Liao P; Kang J; Liu Q; Wang S; Li S; Liu X; Li G J Am Chem Soc; 2023 Mar; 145(8):4659-4666. PubMed ID: 36791392 [TBL] [Abstract][Full Text] [Related]
47. Metal-organic frameworks as kinetic modulators for branched selectivity in hydroformylation. Bauer G; Ongari D; Tiana D; Gäumann P; Rohrbach T; Pareras G; Tarik M; Smit B; Ranocchiari M Nat Commun; 2020 Feb; 11(1):1059. PubMed ID: 32103008 [TBL] [Abstract][Full Text] [Related]
48. Metal-Organic Frameworks as Platforms for Functional Materials. Cui Y; Li B; He H; Zhou W; Chen B; Qian G Acc Chem Res; 2016 Mar; 49(3):483-93. PubMed ID: 26878085 [TBL] [Abstract][Full Text] [Related]
49. Pillar-Layered Metal-Organic Frameworks Based on a Hexaprismane [Co6(μ3-OH)6] Cluster: Structural Modulation and Catalytic Performance in Aerobic Oxidation Reaction. Zhang X; Zhang YZ; Jin YQ; Geng L; Zhang DS; Hu H; Li T; Wang B; Li JR Inorg Chem; 2020 Aug; 59(16):11728-11735. PubMed ID: 32799465 [TBL] [Abstract][Full Text] [Related]
50. Prediction Descriptor for Catalytic Activity of Platinum Nanoparticles/Metal-Organic Framework Composites. Qin P; Yan J; Zhang W; Pan T; Zhang X; Huang W; Zhang W; Fu Y; Shen Y; Huo F ACS Appl Mater Interfaces; 2021 Aug; 13(32):38325-38332. PubMed ID: 34365788 [TBL] [Abstract][Full Text] [Related]
51. Catalysis in Single Crystalline Materials: From Discrete Molecules to Metal-Organic Frameworks. Shi Q; Liu B; Li J; Wang X; Wang L Chem Asian J; 2021 Nov; 16(22):3544-3557. PubMed ID: 34545994 [TBL] [Abstract][Full Text] [Related]
52. Modulation of the catalytic activity of Pt nanoparticles through charge-transfer interactions with metal-organic frameworks. Yoshimaru S; Sadakiyo M; Staykov A; Kato K; Yamauchi M Chem Commun (Camb); 2017 Jun; 53(50):6720-6723. PubMed ID: 28585626 [TBL] [Abstract][Full Text] [Related]
53. Evolution of a Metal-Organic Framework into a Brønsted Acid Catalyst for Glycerol Dehydration to Acrolein. Li X; Huang L; Kochubei A; Huang J; Shen W; Xu H; Li Q ChemSusChem; 2020 Sep; 13(18):5073-5079. PubMed ID: 32667129 [TBL] [Abstract][Full Text] [Related]
54. Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility. Zheng G; de Marchi S; López-Puente V; Sentosun K; Polavarapu L; Pérez-Juste I; Hill EH; Bals S; Liz-Marzán LM; Pastoriza-Santos I; Pérez-Juste J Small; 2016 Aug; 12(29):3935-43. PubMed ID: 27273895 [TBL] [Abstract][Full Text] [Related]
55. Selective Gas-Phase Hydrogenation of CO Dhakshinamoorthy A; Navalón S; Primo A; García H Angew Chem Int Ed Engl; 2024 Jan; 63(3):e202311241. PubMed ID: 37815860 [TBL] [Abstract][Full Text] [Related]
56. Metal-organic frameworks bonded with metal He C; Liang J; Zou YH; Yi JD; Huang YB; Cao R Natl Sci Rev; 2022 Jun; 9(6):nwab157. PubMed ID: 35822067 [TBL] [Abstract][Full Text] [Related]
57. Surface-Deactivated Core-Shell Metal-Organic Framework by Simple Ligand Exchange for Enhanced Size Discrimination in Aerobic Oxidation of Alcohols. Kim S; Lee J; Jeoung S; Moon HR; Kim M Chemistry; 2020 Jun; 26(34):7568-7572. PubMed ID: 32096306 [TBL] [Abstract][Full Text] [Related]
58. Encapsulation of Ultrafine Metal-Organic Framework Nanoparticles within Multichamber Carbon Spheres by a Two-Step Double-Solvent Strategy for High-Performance Catalysts. Shen Y; Li ZF; Guo SY; Shao YR; Hu TL ACS Appl Mater Interfaces; 2021 Mar; 13(10):12169-12180. PubMed ID: 33682409 [TBL] [Abstract][Full Text] [Related]
59. Tuning the topology and functionality of metal-organic frameworks by ligand design. Zhao D; Timmons DJ; Yuan D; Zhou HC Acc Chem Res; 2011 Feb; 44(2):123-33. PubMed ID: 21126015 [TBL] [Abstract][Full Text] [Related]
60. Mixed-Metal Strategy on Metal-Organic Frameworks (MOFs) for Functionalities Expansion: Co Substitution Induces Aerobic Oxidation of Cyclohexene over Inactive Ni-MOF-74. Sun D; Sun F; Deng X; Li Z Inorg Chem; 2015 Sep; 54(17):8639-43. PubMed ID: 26288128 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]