These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 31513191)
1. Competitive double-switched self-assembled cyclic peptide nanotubes: a dual internal and external control. Calvelo M; Granja JR; Garcia-Fandino R Phys Chem Chem Phys; 2019 Oct; 21(37):20750-20756. PubMed ID: 31513191 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics simulations for designing biomimetic pores based on internally functionalized self-assembling α,γ-peptide nanotubes. Calvelo M; Vázquez S; García-Fandiño R Phys Chem Chem Phys; 2015 Nov; 17(43):28586-601. PubMed ID: 26443433 [TBL] [Abstract][Full Text] [Related]
3. Towards functional bionanomaterials based on self-assembling cyclic peptide nanotubes. Brea RJ; Reiriz C; Granja JR Chem Soc Rev; 2010 May; 39(5):1448-56. PubMed ID: 20419200 [TBL] [Abstract][Full Text] [Related]
4. Membrane-targeted self-assembling cyclic peptide nanotubes. Rodríguez-Vázquez N; Ozores HL; Guerra A; González-Freire E; Fuertes A; Panciera M; Priegue JM; Outeiral J; Montenegro J; Garcia-Fandino R; Amorin M; Granja JR Curr Top Med Chem; 2014; 14(23):2647-61. PubMed ID: 25515753 [TBL] [Abstract][Full Text] [Related]
5. Membrane targeting antimicrobial cyclic peptide nanotubes - an experimental and computational study. Claro B; González-Freire E; Calvelo M; Bessa LJ; Goormaghtigh E; Amorín M; Granja JR; Garcia-Fandiño R; Bastos M Colloids Surf B Biointerfaces; 2020 Dec; 196():111349. PubMed ID: 32992285 [TBL] [Abstract][Full Text] [Related]
6. Double Orthogonal Click Reactions for the Development of Antimicrobial Peptide Nanotubes. González-Freire E; Novelli F; Pérez-Estévez A; Seoane R; Amorín M; Granja JR Chemistry; 2021 Feb; 27(9):3029-3038. PubMed ID: 32986280 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics investigation of an oriented cyclic peptide nanotube in DMPC bilayers. Tarek M; Maigret B; Chipot C Biophys J; 2003 Oct; 85(4):2287-98. PubMed ID: 14507693 [TBL] [Abstract][Full Text] [Related]
8. Interaction of a peptide nanotube with a water-membrane interface. Chipot C; Tarek M Phys Biol; 2006 Feb; 3(1):S20-5. PubMed ID: 16582462 [TBL] [Abstract][Full Text] [Related]
9. Coarse-grained molecular dynamics study of cyclic peptide nanotube insertion into a lipid bilayer. Hwang H J Phys Chem A; 2009 Apr; 113(16):4780-7. PubMed ID: 19035669 [TBL] [Abstract][Full Text] [Related]
10. Ion current calculations based on three dimensional Poisson-Nernst-Planck theory for a cyclic peptide nanotube. Hwang H; Schatz GC; Ratner MA J Phys Chem B; 2006 Apr; 110(13):6999-7008. PubMed ID: 16571014 [TBL] [Abstract][Full Text] [Related]
11. Molecular Dynamics Simulations of Transmembrane Cyclic Peptide Nanotubes Using Classical Force Fields, Hydrogen Mass Repartitioning, and Hydrogen Isotope Exchange Methods: A Critical Comparison. Conde D; Garrido PF; Calvelo M; Piñeiro Á; Garcia-Fandino R Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328578 [TBL] [Abstract][Full Text] [Related]
12. Ion channel models based on self-assembling cyclic peptide nanotubes. Montenegro J; Ghadiri MR; Granja JR Acc Chem Res; 2013 Dec; 46(12):2955-65. PubMed ID: 23898935 [TBL] [Abstract][Full Text] [Related]
13. Effect of Water Models on Transmembrane Self-Assembled Cyclic Peptide Nanotubes. Calvelo M; Lynch CI; Granja JR; Sansom MSP; Garcia-Fandiño R ACS Nano; 2021 Apr; 15(4):7053-7064. PubMed ID: 33739081 [TBL] [Abstract][Full Text] [Related]
14. Uncovering the mechanisms of cyclic peptide self-assembly in membranes with the chirality-aware MA(R/S)TINI forcefield. Cabezón A; Calvelo M; Granja JR; Piñeiro Á; Garcia-Fandino R J Colloid Interface Sci; 2023 Jul; 642():84-99. PubMed ID: 37001460 [TBL] [Abstract][Full Text] [Related]
15. Exploring Cyclic Peptide Nanotube Stability Across Diverse Lipid Bilayers and Unveiling Water Transport Dynamics. Moral R; Paul S Langmuir; 2024 Jan; 40(1):882-895. PubMed ID: 38134046 [TBL] [Abstract][Full Text] [Related]
16. Molecular Dynamics Simulation and Analysis of the Antimicrobial Peptide-Lipid Bilayer Interactions. Arasteh S; Bagheri M Methods Mol Biol; 2017; 1548():103-118. PubMed ID: 28013500 [TBL] [Abstract][Full Text] [Related]
17. Energetic and Dynamic Analysis of Transport of Na Song Y; Lee JH; Hwang H; Schatz GC; Hwang H J Phys Chem B; 2016 Nov; 120(46):11912-11922. PubMed ID: 27934398 [TBL] [Abstract][Full Text] [Related]
18. The importance of membrane defects-lessons from simulations. Bennett WF; Tieleman DP Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900 [TBL] [Abstract][Full Text] [Related]
19. Macromolecular assembly and membrane activity of antimicrobial D,L-α-Cyclic peptides. Claro B; Peón A; González-Freire E; Goormaghtigh E; Amorín M; Granja JR; Garcia-Fandiño R; Bastos M Colloids Surf B Biointerfaces; 2021 Dec; 208():112086. PubMed ID: 34492602 [TBL] [Abstract][Full Text] [Related]
20. Structural effects of tachyplesin I and its linear derivative on their aggregation and mobility in lipid bilayers. Han E; Lee H J Mol Graph Model; 2015 Jun; 59():123-8. PubMed ID: 25978805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]