These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 31513191)
21. Fine-Tuning and Enhancement of pH-Dependent Membrane Permeation of Cyclic Peptides by Utilizing Noncanonical Amino Acids with Extended Side Chains. Matsuda M; Ikeda K; Kameda T; Nakao H; Nakano M J Med Chem; 2023 May; 66(10):7054-7062. PubMed ID: 37186548 [TBL] [Abstract][Full Text] [Related]
22. New cyclic peptide assemblies with hydrophobic cavities: the structural and thermodynamic basis of a new class of peptide nanotubes. Amorín M; Castedo L; Granja JR J Am Chem Soc; 2003 Mar; 125(10):2844-5. PubMed ID: 12617629 [TBL] [Abstract][Full Text] [Related]
23. Deletion of all cysteines in tachyplesin I abolishes hemolytic activity and retains antimicrobial activity and lipopolysaccharide selective binding. Ramamoorthy A; Thennarasu S; Tan A; Gottipati K; Sreekumar S; Heyl DL; An FY; Shelburne CE Biochemistry; 2006 May; 45(20):6529-40. PubMed ID: 16700563 [TBL] [Abstract][Full Text] [Related]
24. Dynamic behavior and selective adsorption of a methanol/water mixture inside a cyclic peptide nanotube. Si X; Fan J; Xu J; Zhao X; Zhang L; Qu M J Mol Model; 2018 Jun; 24(7):184. PubMed ID: 29959542 [TBL] [Abstract][Full Text] [Related]
25. Coupling molecular dynamics simulations with experiments for the rational design of indolicidin-analogous antimicrobial peptides. Tsai CW; Hsu NY; Wang CH; Lu CY; Chang Y; Tsai HH; Ruaan RC J Mol Biol; 2009 Sep; 392(3):837-54. PubMed ID: 19576903 [TBL] [Abstract][Full Text] [Related]
26. Peptide nanotubes. Hamley IW Angew Chem Int Ed Engl; 2014 Jul; 53(27):6866-81. PubMed ID: 24920517 [TBL] [Abstract][Full Text] [Related]
27. Separation of chloroform from a dilute solution using a cyclic peptide nanotube: A molecular dynamics study. Zhao X; Fan JF; Si XL; Zhang LL; Qu MN J Mol Graph Model; 2018 Aug; 83():74-83. PubMed ID: 29778743 [TBL] [Abstract][Full Text] [Related]
29. Self-Assembled Peptide Nanotube Films with High Proton Conductivity. Silberbush O; Engel M; Sivron I; Roy S; Ashkenasy N J Phys Chem B; 2019 Nov; 123(46):9882-9888. PubMed ID: 31682119 [TBL] [Abstract][Full Text] [Related]
30. Studies on the structure and stability of cyclic peptide based nanotubes using oligomeric approach: a computational chemistry investigation. Vijayaraj R; Sundar Raman S; Mahesh Kumar R; Subramanian V J Phys Chem B; 2010 Dec; 114(49):16574-83. PubMed ID: 21087024 [TBL] [Abstract][Full Text] [Related]
31. Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles. Sun L; Fan Z; Wang Y; Huang Y; Schmidt M; Zhang M Soft Matter; 2015 May; 11(19):3822-32. PubMed ID: 25858105 [TBL] [Abstract][Full Text] [Related]
32. Four-peptide-nanotube bundle formation by self-assembling of cyclic tetra-β-peptide using G-quartet motif. Ishihara Y; Kimura S Biopolymers; 2013 Apr; 100(2):141-7. PubMed ID: 23616097 [TBL] [Abstract][Full Text] [Related]
33. Conformational Effects in the Transport of Glucose through a Cyclic Peptide Nanotube: A Molecular Dynamics Simulation Study. Seo Y; Song Y; Schatz GC; Hwang H J Phys Chem B; 2018 Aug; 122(34):8174-8184. PubMed ID: 30086632 [TBL] [Abstract][Full Text] [Related]
34. Modeling membranes under a transmembrane potential. Delemotte L; Dehez F; Treptow W; Tarek M J Phys Chem B; 2008 May; 112(18):5547-50. PubMed ID: 18412411 [TBL] [Abstract][Full Text] [Related]
35. Probing the disparate effects of arginine and lysine residues on antimicrobial peptide/bilayer association. Rice A; Wereszczynski J Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1941-1950. PubMed ID: 28583830 [TBL] [Abstract][Full Text] [Related]
36. Molecular dynamics simulation for the structure of the water chain in a transmembrane peptide nanotube. Liu J; Fan J; Tang M; Zhou W J Phys Chem A; 2010 Feb; 114(6):2376-83. PubMed ID: 20099797 [TBL] [Abstract][Full Text] [Related]
37. Theoretical design of the cyclic lipopeptide nanotube as a molecular channel in the lipid bilayer, molecular dynamics and quantum mechanics approach. Khavani M; Izadyar M; Housaindokht MR Phys Chem Chem Phys; 2015 Oct; 17(38):25536-49. PubMed ID: 26366633 [TBL] [Abstract][Full Text] [Related]
38. New alpha,gamma-cyclic peptides-nanotube molecular caps using alpha,alpha-dialkylated alpha-amino acids. Reiriz C; Castedo L; Granja JR J Pept Sci; 2008 Feb; 14(2):241-9. PubMed ID: 18098331 [TBL] [Abstract][Full Text] [Related]
39. Self-assembling peptide nanotubes from enantiomeric pairs of cyclic peptides with alternating D and L amino acid residues. Rosenthal-Aizman K; Svensson G; Undén A J Am Chem Soc; 2004 Mar; 126(11):3372-3. PubMed ID: 15025434 [TBL] [Abstract][Full Text] [Related]
40. Molecular Dynamics Simulation Study of the Protonation State Dependence of Glutamic Acid Transport through a Cyclic Peptide Nanotube. Kim N; Lee JH; Song Y; Lee JH; Schatz GC; Hwang H J Phys Chem B; 2023 Jul; 127(27):6061-6072. PubMed ID: 37369069 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]