These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 31513218)

  • 41. Interfacial Rheology of Gallium-Based Liquid Metals.
    Jacob AR; Parekh DP; Dickey MD; Hsiao LC
    Langmuir; 2019 Sep; 35(36):11774-11783. PubMed ID: 31407902
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Diblock Copolymer Stabilized Liquid Metal Nanoparticles: Particle Settling Behavior and Application to 3D Printing.
    Corrigan N; Shi X; Boyer C
    ACS Macro Lett; 2023 Feb; 12(2):241-247. PubMed ID: 36715433
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shape-transformable liquid metal nanoparticles in aqueous solution.
    Lin Y; Liu Y; Genzer J; Dickey MD
    Chem Sci; 2017 May; 8(5):3832-3837. PubMed ID: 28580116
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Liquid metal-based plasmonics.
    Wang J; Liu S; Vardeny ZV; Nahata A
    Opt Express; 2012 Jan; 20(3):2346-53. PubMed ID: 22330473
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanics of nanoindentation on a monolayer of colloidal hollow nanoparticles.
    Yin J; Retsch M; Lee JH; Thomas EL; Boyce MC
    Langmuir; 2011 Sep; 27(17):10492-500. PubMed ID: 21714497
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Synthesis of monodisperse TiO2-paraffin core-shell nanoparticles for improved dielectric properties.
    Balasubramanian B; Kraemer KL; Reding NA; Skomski R; Ducharme S; Sellmyer DJ
    ACS Nano; 2010 Apr; 4(4):1893-900. PubMed ID: 20359188
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Size-selective breaking of the core-shell structure of gallium nanoparticles.
    Catalán-Gómez S; Redondo-Cubero A; Palomares FJ; Vázquez L; Nogales E; Nucciarelli F; Méndez B; Gordillo N; Pau JL
    Nanotechnology; 2018 Aug; 29(35):355707. PubMed ID: 29888710
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electrolytic reduction of liquid metal oxides and its application to reconfigurable structured devices.
    Wang J; Appusamy K; Guruswamy S; Nahata A
    Sci Rep; 2015 Mar; 5():8637. PubMed ID: 25727894
    [TBL] [Abstract][Full Text] [Related]  

  • 49. CuGaS2 hollow spheres from Ga-CuS core-shell nanoparticles.
    Cha JH; Jung DY
    Ultrason Sonochem; 2014 May; 21(3):1194-9. PubMed ID: 24365224
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sacrificial gold coating enhances transport of liquid metal in pressurized fountain pen lithography.
    Livshits GI; Bao J; Sakamoto L; Misaka T; Usami Y; Otsuka Y; Matsumoto T
    Sci Rep; 2021 Feb; 11(1):4670. PubMed ID: 33633292
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Soft electrodes combining hydrogel and liquid metal.
    Shay T; Velev OD; Dickey MD
    Soft Matter; 2018 May; 14(17):3296-3303. PubMed ID: 29670971
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interplay between Interfacial Energy, Contact Mechanics, and Capillary Forces in EGaIn Droplets.
    Amini S; Chen X; Chua JQI; Tee JS; Nijhuis CA; Miserez A
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28074-28084. PubMed ID: 35649179
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A Simple and Cost-Effective Method for Producing Stable Surfactant-Coated EGaIn Liquid Metal Nanodroplets.
    Xu B; Ye F; Chang G; Li R
    Materials (Basel); 2020 Aug; 13(17):. PubMed ID: 32854305
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Controlling transport and chemical functionality of magnetic nanoparticles.
    Latham AH; Williams ME
    Acc Chem Res; 2008 Mar; 41(3):411-20. PubMed ID: 18251514
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solution processable liquid metal nanodroplets by surface-initiated atom transfer radical polymerization.
    Yan J; Malakooti MH; Lu Z; Wang Z; Kazem N; Pan C; Bockstaller MR; Majidi C; Matyjaszewski K
    Nat Nanotechnol; 2019 Jul; 14(7):684-690. PubMed ID: 31110266
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Colloidally stable selenium@copper selenide core@shell nanoparticles as selenium source for manufacturing of copper-indium-selenide solar cells.
    Dong H; Quintilla A; Cemernjak M; Popescu R; Gerthsen D; Ahlswede E; Feldmann C
    J Colloid Interface Sci; 2014 Feb; 415():103-10. PubMed ID: 24267336
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enabling High-Performance Pressure and Proximity Dual-Mode Sensing with EGaIn/Ag/ZnO Egg-Shell Ternary Composite Particles.
    Zhang J; Wang X; Yang Z; Wang J; Cao J; Chen Q; Yu S; Zhang J; Guo T; Li H; Huang X
    ACS Appl Mater Interfaces; 2023 Dec; 15(50):58623-58630. PubMed ID: 38055862
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Lab and Pilot-Scale Synthesis of M
    Ribes À; Sánchez-Cabezas S; Hernández-Montoto A; Villaescusa LA; Aznar E; Martínez-Máñez R; Marcos MD; López-Tendero MJ; Pradas S; Cuenca-Bustos A
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32024110
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Water-processable liquid metal nanoparticles by single-step polymer encapsulation.
    Liu Y; Wang Q; Bi S; Zhang W; Zhou H; Jiang X
    Nanoscale; 2020 Jul; 12(25):13731-13741. PubMed ID: 32573574
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Actively Triggerable Metals via Liquid Metal Embrittlement for Biomedical Applications.
    Feig VR; Remlova E; Muller B; Kuosmanen JLP; Lal N; Ginzburg A; Nan K; Patel A; Jebran AM; Bantwal MP; Fabian N; Ishida K; Jenkins J; Rosenboom JG; Park S; Madani W; Hayward A; Traverso G
    Adv Mater; 2023 Mar; 35(11):e2208227. PubMed ID: 36321332
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.