These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 31513323)

  • 1. 3D Honeycomb Architecture Enables a High-Rate and Long-Life Iron (III) Fluoride-Lithium Battery.
    Wu F; Srot V; Chen S; Lorger S; van Aken PA; Maier J; Yu Y
    Adv Mater; 2019 Oct; 31(43):e1905146. PubMed ID: 31513323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-Organic Framework-Derived Nanoconfinements of CoF
    Wu F; Srot V; Chen S; Zhang M; van Aken PA; Wang Y; Maier J; Yu Y
    ACS Nano; 2021 Jan; 15(1):1509-1518. PubMed ID: 33356136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudocapacitance-Enhanced Storage Kinetics of 3D Anhydrous Iron (III) Fluoride as a Cathode for Li/Na-Ion Batteries.
    Zhang T; Liu Y; Chen G; Liu H; Han Y; Zhai S; Zhang L; Pan Y; Li Q; Li Q
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building an Electronic Bridge via Ag Decoration To Enhance Kinetics of Iron Fluoride Cathode in Lithium-Ion Batteries.
    Li Y; Zhou X; Bai Y; Chen G; Wang Z; Li H; Wu F; Wu C
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19852-19860. PubMed ID: 28453247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphitized Carbon-Coated Iron Fluoride Nanocavities for Enhanced Kinetics of Multielectron Cathode Conversion Reactions.
    Shi Y; Xu X; Li J; Li J; Yin P; Jiang Q; Wang J; Li W; Xu K; Zhang K; Yang J; Li X
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41504-41515. PubMed ID: 37611062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Honeycomb-Like Nitrogen-Doped Carbon 3D Nanoweb@Li
    Kim Y; Han H; Noh Y; Bae J; Ham MH; Kim WB
    ChemSusChem; 2019 Feb; 12(4):824-829. PubMed ID: 30569512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructured Iron Fluoride Derived from Fe-Based Metal-Organic Framework for Lithium Ion Battery Cathodes.
    Cheng Q; Pan Y; Chen Y; Zeb A; Lin X; Yuan Z; Liu J
    Inorg Chem; 2020 Sep; 59(17):12700-12710. PubMed ID: 32806004
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fading Mechanisms and Voltage Hysteresis in FeF
    Huang Q; Pollard TP; Ren X; Kim D; Magasinski A; Borodin O; Yushin G
    Small; 2019 Feb; 15(6):e1804670. PubMed ID: 30645034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal Fluoride Cathode Materials for Lithium Rechargeable Batteries: Focus on Iron Fluorides.
    Sun L; Li Y; Feng W
    Small Methods; 2023 Feb; 7(2):e2201152. PubMed ID: 36564355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unveiling the Role and Mechanism of Nb Doping and In Situ Carbon Coating on Improving Lithium-Ion Storage Characteristics of Rod-Like Morphology FeF
    Liu M; Liu J; Chen B; Wu T; Wang G; Chen M; Yang Z; Bai Y; Wang X
    Small; 2022 Jan; 18(1):e2105193. PubMed ID: 34786835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low Temperature Nanotailoring of Hydrated Compound by Alcohols: FeF
    Zhou H; Sun H; Wang T; Gao Y; Ding J; Xu Z; Tang J; Jia M; Yang J; Zhu J
    Inorg Chem; 2019 May; 58(10):6765-6771. PubMed ID: 31070899
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ammonium Fluoride Mediated Synthesis of Anhydrous Metal Fluoride-Mesoporous Carbon Nanocomposites for High-Performance Lithium Ion Battery Cathodes.
    Chun J; Jo C; Sahgong S; Kim MG; Lim E; Kim DH; Hwang J; Kang E; Ryu KA; Jung YS; Kim Y; Lee J
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):35180-35190. PubMed ID: 27754647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomistic Insights into FeF
    Yang Z; Zhao S; Pan Y; Wang X; Liu H; Wang Q; Zhang Z; Deng B; Guo C; Shi X
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):3142-3151. PubMed ID: 29286642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confined iron fluoride@CMK-3 nanocomposite as an ultrahigh rate capability cathode for Li-ion batteries.
    Li B; Zhang N; Sun K
    Small; 2014 May; 10(10):2039-46. PubMed ID: 24573944
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FeOF/TiO
    Li W; Chen Y; Zangiabadi A; Li Z; Xiao X; Huang W; Cheng Q; Lou S; Zhang H; Cao A; Roy X; Yang Y
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):33803-33809. PubMed ID: 32614164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Performance Cathode Material of FeF
    Lu L; Li S; Li J; Lan L; Lu Y; Xu S; Huang S; Pan C; Zhao F
    Nanoscale Res Lett; 2019 Mar; 14(1):100. PubMed ID: 30877480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-Dimensional Honeycomb-Structural LiAlO
    Li J; Luo S; Ding X; Wang Q; He P
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):10786-10795. PubMed ID: 29528209
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scalable Synthesis of Honeycomb-like Ordered Mesoporous Carbon Nanosheets and Their Application in Lithium-Sulfur Batteries.
    Park SK; Lee J; Hwang T; Jang B; Piao Y
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2430-2438. PubMed ID: 28008762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries.
    Fan X; Zhu Y; Luo C; Suo L; Lin Y; Gao T; Xu K; Wang C
    ACS Nano; 2016 May; 10(5):5567-77. PubMed ID: 27163232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-Fe Mixed Metal Phosphide Nanocubes with Highly Interconnected-Pore Architecture as an Efficient Polysulfide Mediator for Lithium-Sulfur Batteries.
    Chen Y; Zhang W; Zhou D; Tian H; Su D; Wang C; Stockdale D; Kang F; Li B; Wang G
    ACS Nano; 2019 Apr; 13(4):4731-4741. PubMed ID: 30924635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.