These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31513323)

  • 21. Naturally derived honeycomb-like N,S-codoped hierarchical porous carbon with MS
    Liu J; Xiao SH; Zhang Z; Chen Y; Xiang Y; Liu X; Chen JS; Chen P
    Nanoscale; 2020 Feb; 12(8):5114-5124. PubMed ID: 32073093
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploiting the Iron Difluoride Electrochemistry by Constructing Hierarchical Electron Pathways and Cathode Electrolyte Interface.
    Liu S; Chen J; Su Y; Zheng C; Zhu D; Zhang X; Zhou X; Ouyang R; Huang Q; He Y; Tang L; Li S; Qiu Y; Wang G; Tang Y; Zhang L; Huang Q; Huang J
    Small; 2022 Jul; 18(28):e2202006. PubMed ID: 35689303
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seeding Iron Trifluoride Nanoparticles on Reduced Graphite Oxide for Lithium-Ion Batteries with Enhanced Loading and Stability.
    Qiu D; Fu L; Zhan C; Lu J; Wu D
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29505-29510. PubMed ID: 30092138
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Honeycomb-like Co@N-C Composite for Ultrahigh Sulfur Loading Li-S Batteries.
    Li Y; Fan J; Zhang J; Yang J; Yuan R; Chang J; Zheng M; Dong Q
    ACS Nano; 2017 Nov; 11(11):11417-11424. PubMed ID: 29045778
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CoSe nanoparticles in-situ grown in 3D honeycomb carbon for high-performance lithium storage.
    Zhang T; Yuan YF; Wang BX; Cai GS; Du PF; Huang YZ; Guo SY
    J Colloid Interface Sci; 2023 Jun; 640():52-60. PubMed ID: 36841171
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Boosting the Electrochemical Performance of Primary and Secondary Lithium Batteries with Mn-Doped All-Fluoride Cathodes.
    Luo S; Gao M; Cai D; Zhu L; Lai C; Peng Y; Yue H; Xie H; Yuan Z
    ACS Appl Mater Interfaces; 2024 Jun; 16(22):28719-28730. PubMed ID: 38801672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Role of Electrolyte Composition in Enabling Li Metal-Iron Fluoride Full-Cell Batteries.
    Wygant BR; Merrill LC; Harrison KL; Talin AA; Ashby DS; Lambert TN
    Adv Sci (Weinh); 2022 Apr; 9(12):e2105803. PubMed ID: 35199953
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Construction of ion-electron conduction network on FeS
    Shen C; Liu Y; Shi Y; Liu X; Jiang Y; Huang S; Zhang J; Zhao B
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):85-93. PubMed ID: 37708735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D pomegranate-like TiN@graphene composites with electrochemical reaction chambers as sulfur hosts for ultralong-life lithium-sulfur batteries.
    Luo R; Yu Q; Lu Y; Zhang M; Peng T; Yan H; Liu X; Kim JK; Luo Y
    Nanoscale Horiz; 2019 Mar; 4(2):531-539. PubMed ID: 32254105
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries.
    Wang DY; Guo W; Fu Y
    Acc Chem Res; 2019 Aug; 52(8):2290-2300. PubMed ID: 31386341
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrochemical Activation of Fe-LiF Conversion Cathodes in Thin-Film Solid-State Batteries.
    Casella J; Morzy J; Gilshtein E; Yarema M; Futscher MH; Romanyuk YE
    ACS Nano; 2024 Feb; 18(5):4352-4359. PubMed ID: 38284312
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In Situ Generated Li
    Yan H; Wang H; Wang D; Li X; Gong Z; Yang Y
    Nano Lett; 2019 May; 19(5):3280-3287. PubMed ID: 31009570
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries.
    Wu F; Maier J; Yu Y
    Chem Soc Rev; 2020 Mar; 49(5):1569-1614. PubMed ID: 32055806
    [TBL] [Abstract][Full Text] [Related]  

  • 34. From Metal-Organic Framework to Li
    He J; Chen Y; Lv W; Wen K; Xu C; Zhang W; Li Y; Qin W; He W
    ACS Nano; 2016 Dec; 10(12):10981-10987. PubMed ID: 28024364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A High-Efficiency CoSe Electrocatalyst with Hierarchical Porous Polyhedron Nanoarchitecture for Accelerating Polysulfides Conversion in Li-S Batteries.
    Ye Z; Jiang Y; Li L; Wu F; Chen R
    Adv Mater; 2020 Aug; 32(32):e2002168. PubMed ID: 32596845
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strategies toward High-Performance Cathode Materials for Lithium-Oxygen Batteries.
    Wang KX; Zhu QC; Chen JS
    Small; 2018 Jul; 14(27):e1800078. PubMed ID: 29750439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Room-Temperature Pseudo-Solid-State Iron Fluoride Conversion Battery with High Ionic Conductivity.
    Lapp AS; Merrill LC; Wygant BR; Ashby DS; Bhandarkar AS; Zhang AC; Fuller EJ; Harrison KL; Lambert TN; Talin AA
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):893-902. PubMed ID: 36538758
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A 3D and Stable Lithium Anode for High-Performance Lithium-Iodine Batteries.
    Li K; Hu Z; Ma J; Chen S; Mu D; Zhang J
    Adv Mater; 2019 Aug; 31(33):e1902399. PubMed ID: 31222829
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures.
    Li Y; Fu KK; Chen C; Luo W; Gao T; Xu S; Dai J; Pastel G; Wang Y; Liu B; Song J; Chen Y; Yang C; Hu L
    ACS Nano; 2017 May; 11(5):4801-4807. PubMed ID: 28485923
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced cycle performance of lithium-sulfur batteries using a separator modified with a PVDF-C layer.
    Wei H; Ma J; Li B; Zuo Y; Xia D
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20276-81. PubMed ID: 25275455
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.