BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 31513370)

  • 1. Enzymatic Degradation of DNA Probed by
    Krishnamoorthy K; Kewalramani S; Ehlen A; Moreau LM; Mirkin CA; Olvera de la Cruz M; Bedzyk MJ
    ACS Nano; 2019 Oct; 13(10):11382-11391. PubMed ID: 31513370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counterion distribution surrounding spherical nucleic acid-Au nanoparticle conjugates probed by small-angle x-ray scattering.
    Kewalramani S; Zwanikken JW; Macfarlane RJ; Leung CY; Olvera de la Cruz M; Mirkin CA; Bedzyk MJ
    ACS Nano; 2013 Dec; 7(12):11301-9. PubMed ID: 24251367
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding nucleic acid structural changes by comparing wide-angle x-ray scattering (WAXS) experiments to molecular dynamics simulations.
    Pabit SA; Katz AM; Tolokh IS; Drozdetski A; Baker N; Onufriev AV; Pollack L
    J Chem Phys; 2016 May; 144(20):205102. PubMed ID: 27250330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Methods for Modeling Protein Structures Using Molecular Dynamics Simulations and Small-Angle X-Ray Scattering Data.
    Ekimoto T; Ikeguchi M
    Adv Exp Med Biol; 2018; 1105():237-258. PubMed ID: 30617833
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fast-SAXS-pro: a unified approach to computing SAXS profiles of DNA, RNA, protein, and their complexes.
    Ravikumar KM; Huang W; Yang S
    J Chem Phys; 2013 Jan; 138(2):024112. PubMed ID: 23320673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids.
    Nguyen HT; Pabit SA; Meisburger SP; Pollack L; Case DA
    J Chem Phys; 2014 Dec; 141(22):22D508. PubMed ID: 25494779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins.
    Kikhney AG; Svergun DI
    FEBS Lett; 2015 Sep; 589(19 Pt A):2570-7. PubMed ID: 26320411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAXS studies of ion-nucleic acid interactions.
    Pollack L
    Annu Rev Biophys; 2011; 40():225-42. PubMed ID: 21332357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining the Locations of Ions and Water around DNA from X-Ray Scattering Measurements.
    Meisburger SP; Pabit SA; Pollack L
    Biophys J; 2015 Jun; 108(12):2886-95. PubMed ID: 26083928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combined Small-Angle X-ray and Neutron Scattering Restraints in Molecular Dynamics Simulations.
    Chen PC; Shevchuk R; Strnad FM; Lorenz C; Karge L; Gilles R; Stadler AM; Hennig J; Hub JS
    J Chem Theory Comput; 2019 Aug; 15(8):4687-4698. PubMed ID: 31251056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the Structure of a Protein-Spherical Nucleic Acid Conjugate and Its Counterionic Cloud.
    Krishnamoorthy K; Hoffmann K; Kewalramani S; Brodin JD; Moreau LM; Mirkin CA; Olvera de la Cruz M; Bedzyk MJ
    ACS Cent Sci; 2018 Mar; 4(3):378-386. PubMed ID: 29632884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of ionic strength on SAXS data for proteins revealed by molecular dynamics simulations.
    Oroguchi T; Ikeguchi M
    J Chem Phys; 2011 Jan; 134(2):025102. PubMed ID: 21241150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mono- and trivalent ions around DNA: a small-angle scattering study of competition and interactions.
    Andresen K; Qiu X; Pabit SA; Lamb JS; Park HY; Kwok LW; Pollack L
    Biophys J; 2008 Jul; 95(1):287-95. PubMed ID: 18339743
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Counterion distribution around DNA probed by solution X-ray scattering.
    Das R; Mills TT; Kwok LW; Maskel GS; Millett IS; Doniach S; Finkelstein KD; Herschlag D; Pollack L
    Phys Rev Lett; 2003 May; 90(18):188103. PubMed ID: 12786045
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Situ Configuration Studies on Segmented DNA Origami Nanotubes.
    Zhu B; Guo J; Zhang L; Pan M; Jing X; Wang L; Liu X; Zuo X
    Chembiochem; 2019 Jun; 20(12):1508-1513. PubMed ID: 30702811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Characterization of Nucleic Acid Nanoparticles Using SAXS and SAXS-Driven MD.
    Byrnes J; Chopra K; Rolband LA; Danai L; Chodankar S; Yang L; Afonin KA
    Methods Mol Biol; 2023; 2709():65-94. PubMed ID: 37572273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reweighting of molecular simulations with explicit-solvent SAXS restraints elucidates ion-dependent RNA ensembles.
    Bernetti M; Hall KB; Bussi G
    Nucleic Acids Res; 2021 Aug; 49(14):e84. PubMed ID: 34107023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid interpretation of small-angle X-ray scattering data.
    Weiel M; Reinartz I; Schug A
    PLoS Comput Biol; 2019 Mar; 15(3):e1006900. PubMed ID: 30901335
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Expanded Conformation of an Antibody Fab Region by X-Ray Scattering, Molecular Dynamics, and smFRET Identifies an Aggregation Mechanism.
    Codina N; Hilton D; Zhang C; Chakroun N; Ahmad SS; Perkins SJ; Dalby PA
    J Mol Biol; 2019 Mar; 431(7):1409-1425. PubMed ID: 30776431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.