These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31513383)

  • 1. Effect of Functional Chemistry on the Rejection of Low-Molecular Weight Neutral Organics through Reverse Osmosis Membranes for Potable Reuse.
    Breitner LN; Howe KJ; Minakata D
    Environ Sci Technol; 2019 Oct; 53(19):11401-11409. PubMed ID: 31513383
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boron Can Be Used to Predict Trace Organic Rejection through Reverse Osmosis Membranes for Potable Reuse.
    Breitner LN; Howe KJ; Minakata D
    Environ Sci Technol; 2018 Dec; 52(23):13871-13878. PubMed ID: 30444356
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Group Contribution Method to Predict the Mass Transfer Coefficients of Organics through Various RO Membranes.
    Kibler R; Mohrhardt B; Zhang M; Breitner L; Howe KJ; Minakata D
    Environ Sci Technol; 2020 Apr; 54(8):5167-5177. PubMed ID: 32208649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of reverse osmosis membrane age on rejection of NDMA precursors and formation of NDMA in finished water after full advanced treatment for potable reuse.
    Roback SL; Ishida KP; Plumlee MH
    Chemosphere; 2019 Oct; 233():120-131. PubMed ID: 31170582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Trace organic solutes in closed-loop forward osmosis applications: influence of membrane fouling and modeling of solute build-up.
    D'Haese A; Le-Clech P; Van Nevel S; Verbeken K; Cornelissen ER; Khan SJ; Verliefde AR
    Water Res; 2013 Sep; 47(14):5232-44. PubMed ID: 23866149
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Nanofiltration Decision Tool for Potable Reuse: A New Rejection Model for Recalcitrant CECs.
    Jones SM; Watts MJ; Wickramasinghe SR
    Water Environ Res; 2017 Nov; 89(11):1942-1951. PubMed ID: 28577313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rejection of emerging organic micropollutants in nanofiltration-reverse osmosis membrane applications.
    Xu P; Drewes JE; Bellona C; Amy G; Kim TU; Adam M; Heberer T
    Water Environ Res; 2005; 77(1):40-8. PubMed ID: 15765934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High rejection reverse osmosis membrane for removal of N-nitrosamines and their precursors.
    Fujioka T; Ishida KP; Shintani T; Kodamatani H
    Water Res; 2018 Mar; 131():45-51. PubMed ID: 29268083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane distillation for achieving high water recovery for potable water reuse.
    Ngo MTT; Diep BQ; Sano H; Nishimura Y; Boivin S; Kodamatani H; Takeuchi H; Sakti SCW; Fujioka T
    Chemosphere; 2022 Feb; 288(Pt 3):132610. PubMed ID: 34678340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination and occurrence of organic micropollutants in reverse osmosis treatment for advanced water reuse.
    Gomez V; Majamaa K; Pocurull E; Borrull F
    Water Sci Technol; 2012; 66(1):61-71. PubMed ID: 22678201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online monitoring of N-nitrosodimethylamine rejection as a performance indicator of trace organic chemical removal by reverse osmosis.
    Fujioka T; Takeuchi H; Tanaka H; Kodamatani H
    Chemosphere; 2018 Jun; 200():80-85. PubMed ID: 29475031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace and bulk organics removal during ozone-biofiltration treatment for potable reuse applications.
    Sundaram V; Pagilla K
    Water Environ Res; 2020 Mar; 92(3):430-440. PubMed ID: 31411786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rejection of organic compounds by ultra-low pressure reverse osmosis membrane.
    Ozaki H; Li H
    Water Res; 2002 Jan; 36(1):123-30. PubMed ID: 11766787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis.
    Xie M; Nghiem LD; Price WE; Elimelech M
    Water Res; 2012 May; 46(8):2683-92. PubMed ID: 22402269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reverse osmosis membrane functionalized with aminated graphene oxide and polydopamine nanospheres plugging for enhanced NDMA rejection and anti-fouling performance.
    Khanzada NK; Rehman S; Kharraz JA; Farid MU; Khatri M; Hilal N; An AK
    Chemosphere; 2023 Oct; 338():139557. PubMed ID: 37478994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the impacts of membrane type, coating, fouling, chemical properties and water chemistry on reverse osmosis rejection of seven nitrosoalklyamines, including NDMA.
    Steinle-Darling E; Zedda M; Plumlee MH; Ridgway HF; Reinhard M
    Water Res; 2007 Sep; 41(17):3959-67. PubMed ID: 17582457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparing microfiltration-reverse osmosis and soil-aquifer treatment for indirect potable reuse of water.
    Drewes JE; Reinhard M; Fox P
    Water Res; 2003 Sep; 37(15):3612-21. PubMed ID: 12867327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of perfluoroalkyl and polyfluoroalkyl substances in potable reuse systems.
    Glover CM; Quiñones O; Dickenson ERV
    Water Res; 2018 Nov; 144():454-461. PubMed ID: 30071400
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viability of a low-pressure nanofilter in treating recycled water for water reuse applications: a pilot-scale study.
    Bellona C; Drewes JE
    Water Res; 2007 Sep; 41(17):3948-58. PubMed ID: 17582458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rejection of trace organic compounds by forward osmosis membranes: a literature review.
    Coday BD; Yaffe BG; Xu P; Cath TY
    Environ Sci Technol; 2014 Apr; 48(7):3612-24. PubMed ID: 24552278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.