These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31513397)

  • 1. Understanding Carbamate Formation Reaction Thermochemistry of Amino Acids as Solvents for Postcombustion CO
    Gupta M; Svendsen HF
    J Phys Chem B; 2019 Oct; 123(40):8433-8447. PubMed ID: 31513397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postcombustion CO2 Capture Solvent Characterization Employing the Explicit Solvation Shell Model and Continuum Solvation Models.
    Gupta M; da Silva EF; Svendsen HF
    J Phys Chem B; 2016 Sep; 120(34):9034-50. PubMed ID: 27462837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling Differential Enthalpy of Absorption of CO
    Gupta M; da Silva EF; Svendsen HF
    J Phys Chem B; 2022 Mar; 126(9):1980-1991. PubMed ID: 35226495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling temperature dependency of amine basicity using PCM and SM8T implicit solvation models.
    Gupta M; da Silva EF; Svendsen HF
    J Phys Chem B; 2012 Feb; 116(6):1865-75. PubMed ID: 22251398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling temperature dependency of ionization constants of amino acids and carboxylic acids.
    Gupta M; da Silva EF; Svendsen HF
    J Phys Chem B; 2013 Jun; 117(25):7695-709. PubMed ID: 23713904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical study of differential enthalpy of absorption of CO2 with MEA and MDEA as a function of temperature.
    Gupta M; da Silva EF; Hartono A; Svendsen HF
    J Phys Chem B; 2013 Aug; 117(32):9457-68. PubMed ID: 23855311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Solvation Effects on CO
    Yamada H
    J Phys Chem B; 2016 Oct; 120(40):10563-10568. PubMed ID: 27656908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Critical Evaluation of Implicit Solvent Models for Predicting Aqueous Oxidation Potentials of Neutral Organic Compounds.
    Guerard JJ; Arey JS
    J Chem Theory Comput; 2013 Nov; 9(11):5046-58. PubMed ID: 26583419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.
    Deng N; Zhang BW; Levy RM
    J Chem Theory Comput; 2015 Jun; 11(6):2868-78. PubMed ID: 26236174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the absorption load, high viscosity, and regeneration efficiency of CO
    Zhao S; Wang Y; Zhu K; Zhao D; Song Q
    Environ Sci Pollut Res Int; 2022 Dec; 29(56):84903-84915. PubMed ID: 35790629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbamate stabilities of sterically hindered amines from quantum chemical methods: relevance for CO2 capture.
    Gangarapu S; Marcelis AT; Zuilhof H
    Chemphyschem; 2013 Dec; 14(17):3936-43. PubMed ID: 24203852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the capture of CO2 by substituted monoethanolamines: electronic effects of fluorine and methyl substituents.
    Gangarapu S; Marcelis AT; Zuilhof H
    Chemphyschem; 2012 Dec; 13(17):3973-80. PubMed ID: 22965750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental and computational study of CO2 storage and sequestration with aqueous 2-amino-2-hydroxymethyl-1,3-propanediol (TRIS) solutions.
    Oktavian R; Taha M; Lee MJ
    J Phys Chem A; 2014 Dec; 118(49):11572-82. PubMed ID: 25388218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational methods in organic thermochemistry. 1. Hydrocarbon enthalpies and free energies of formation.
    Bond D
    J Org Chem; 2007 Jul; 72(15):5555-66. PubMed ID: 17580898
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acid-base thermochemistry of gaseous oxygen and sulfur substituted amino acids (Ser, Thr, Cys, Met).
    Riffet V; Frison G; Bouchoux G
    Phys Chem Chem Phys; 2011 Nov; 13(41):18561-80. PubMed ID: 21947236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods To Improve the Calculations of Solvation Model Density Solvation Free Energies and Associated Aqueous p
    Xu L; Coote ML
    J Phys Chem A; 2019 Aug; 123(34):7430-7438. PubMed ID: 31382743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards commercial scale postcombustion capture of CO2 with monoethanolamine solvent: key considerations for solvent management and environmental impacts.
    Reynolds AJ; Verheyen TV; Adeloju SB; Meuleman E; Feron P
    Environ Sci Technol; 2012 Apr; 46(7):3643-54. PubMed ID: 22324566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrooxidation of homogentisic acid in aqueous and mixed solvent solutions: experimental and theoretical studies.
    Eslami M; Namazian M; Zare HR
    J Phys Chem B; 2013 Mar; 117(9):2757-63. PubMed ID: 23384055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical calculation of jet fuel thermochemistry. 1. Tetrahydrodicylopentadiene (JP10) thermochemistry using the CBS-QB3 and G3(MP2)//B3LYP methods.
    Zehe MJ; Jaffe RL
    J Org Chem; 2010 Jul; 75(13):4387-91. PubMed ID: 20509620
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.