BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31513702)

  • 1. Shear Wave Propagation and Estimation of Material Parameters in a Nonlinear, Fibrous Material.
    Hou Z; Okamoto RJ; Bayly PV
    J Biomech Eng; 2020 May; 142(5):0510101-05101010. PubMed ID: 31513702
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shear wave speeds in nearly-incompressible fibrous materials with two fiber families.
    Hou Z; Bayly PV; Okamoto RJ
    J Acoust Soc Am; 2021 Feb; 149(2):1097. PubMed ID: 33639778
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of Anisotropic Material Properties of Soft Tissue by MRI of Ultrasound-Induced Shear Waves.
    Guertler CA; Okamoto RJ; Ireland JA; Pacia CP; Garbow JR; Chen H; Bayly PV
    J Biomech Eng; 2020 Mar; 142(3):0310011-03100117. PubMed ID: 31980814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of material parameters from slow and fast shear waves in an incompressible, transversely isotropic material.
    Tweten DJ; Okamoto RJ; Schmidt JL; Garbow JR; Bayly PV
    J Biomech; 2015 Nov; 48(15):4002-4009. PubMed ID: 26476762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study.
    Tweten DJ; Okamoto RJ; Bayly PV
    Magn Reson Med; 2017 Dec; 78(6):2360-2372. PubMed ID: 28097687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shear wave speeds in a nearly incompressible fibrous material with two unequal fiber families.
    Wang S; Okamoto RJ; McGarry MDJ; Bayly PV
    J Acoust Soc Am; 2024 Apr; 155(4):2327-2338. PubMed ID: 38557738
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic resonance elastography of slow and fast shear waves illuminates differences in shear and tensile moduli in anisotropic tissue.
    Schmidt JL; Tweten DJ; Benegal AN; Walker CH; Portnoi TE; Okamoto RJ; Garbow JR; Bayly PV
    J Biomech; 2016 May; 49(7):1042-1049. PubMed ID: 26920505
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A robust anisotropic hyperelastic formulation for the modelling of soft tissue.
    Nolan DR; Gower AL; Destrade M; Ogden RW; McGarry JP
    J Mech Behav Biomed Mater; 2014 Nov; 39():48-60. PubMed ID: 25104546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tractable calculation of the Green's tensor for shear wave propagation in an incompressible, transversely isotropic material.
    Rouze NC; Palmeri ML; Nightingale KR
    Phys Med Biol; 2020 Jan; 65(1):015014. PubMed ID: 31775132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography.
    Schmidt JL; Tweten DJ; Badachhape AA; Reiter AJ; Okamoto RJ; Garbow JR; Bayly PV
    J Mech Behav Biomed Mater; 2018 Mar; 79():30-37. PubMed ID: 29253729
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling transversely isotropic, viscoelastic, incompressible tissue-like materials with application in ultrasound shear wave elastography.
    Qiang B; Brigham JC; Aristizabal S; Greenleaf JF; Zhang X; Urban MW
    Phys Med Biol; 2015 Feb; 60(3):1289-306. PubMed ID: 25591921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of the mechanical properties of a transversely isotropic material from shear wave fields via artificial neural networks.
    Hou Z; Guertler CA; Okamoto RJ; Chen H; Garbow JR; Kamilov US; Bayly PV
    J Mech Behav Biomed Mater; 2022 Feb; 126():105046. PubMed ID: 34953435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium.
    Rouze NC; Wang MH; Palmeri ML; Nightingale KR
    J Biomech; 2013 Nov; 46(16):2761-8. PubMed ID: 24094454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential effects of pre-tension on shear wave propagation in elastic media with different boundary conditions as measured by magnetic resonance elastography and finite element modeling.
    Chen Q; Ringleb SI; Manduca A; Ehman RL; An KN
    J Biomech; 2006; 39(8):1428-34. PubMed ID: 15964007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear wave propagation in anisotropic soft tissues and gels.
    Namani R; Bayly PV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():1117-22. PubMed ID: 19963987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A heterogenous, time harmonic, nearly incompressible transverse isotropic finite element brain simulation platform for MR elastography.
    McGarry M; Houten EV; Guertler C; Okamoto R; Smith D; Sowinski D; Johnson C; Bayly P; Weaver J; Paulsen K
    Phys Med Biol; 2021 Feb; 66(5):. PubMed ID: 32512548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical wave speed sensitivity study for assessment of myocardial elasticity in a simplified linear elastic and isotropic left ventricle model.
    Carlson KD; Pislaru C; Pislaru SV; Dragomir-Daescu D
    Med Eng Phys; 2021 Dec; 98():20-27. PubMed ID: 34848034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of ultrasound elastography, magnetic resonance elastography and finite element model to quantify nonlinear shear modulus.
    Pagé G; Bied M; Garteiser P; Van Beers B; Etaix N; Fraschini C; Bel-Brunon A; Gennisson JL
    Phys Med Biol; 2023 Oct; 68(20):. PubMed ID: 37703895
    [No Abstract]   [Full Text] [Related]  

  • 19. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.
    Guo M; Abbott D; Lu M; Liu H
    Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media.
    Palmeri ML; Qiang B; Chen S; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):78-92. PubMed ID: 28026760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.