These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 31513733)
1. Pseudobactins bounded iron nanoparticles for control of an antibiotic-resistant Pseudomonas aeruginosa ryn32. Kotb E; Ahmed AA; Saleh TA; Ajeebi AM; Al-Gharsan MS; Aldahmash NF Biotechnol Prog; 2020 Jan; 36(1):e2907. PubMed ID: 31513733 [TBL] [Abstract][Full Text] [Related]
2. Pyoverdines Are Essential for the Antibacterial Activity of Pseudomonas chlororaphis YL-1 under Low-Iron Conditions. Liu Y; Dai C; Zhou Y; Qiao J; Tang B; Yu W; Zhang R; Liu Y; Lu SE Appl Environ Microbiol; 2021 Mar; 87(7):. PubMed ID: 33452032 [No Abstract] [Full Text] [Related]
3. Antibacterial activity of biochemically capped iron oxide nanoparticles: A view towards green chemistry. Irshad R; Tahir K; Li B; Ahmad A; R Siddiqui A; Nazir S J Photochem Photobiol B; 2017 May; 170():241-246. PubMed ID: 28454048 [TBL] [Abstract][Full Text] [Related]
4. Antimicrobial, Biofilm Inhibitory and Anti-infective Activity of Metallic Nanoparticles Against Pathogens MRSA and Pseudomonas aeruginosa PA01. Aswathanarayan JB; Vittal RR Pharm Nanotechnol; 2017; 5(2):148-153. PubMed ID: 28440203 [TBL] [Abstract][Full Text] [Related]
5. The synthesis and antibacterial activity of two pyoverdin-ampicillin conjugates, entering Pseudomonas aeruginosa via the pyoverdin-mediated iron uptake pathway. Kinzel O; Tappe R; Gerus I; Budzikiewicz H J Antibiot (Tokyo); 1998 May; 51(5):499-507. PubMed ID: 9666179 [TBL] [Abstract][Full Text] [Related]
6. Synthesis, iron(III) complexation properties, molecular dynamics simulations and P. aeruginosa siderophore-like activity of two pyoverdine analogs. Antonietti V; Boudesocque S; Dupont L; Farvacques N; Cézard C; Da Nascimento S; Raimbert JF; Socrier L; Robin TJ; Morandat S; El Kirat K; Mullié C; Sonnet P Eur J Med Chem; 2017 Sep; 137():338-350. PubMed ID: 28614758 [TBL] [Abstract][Full Text] [Related]
8. Chemistry and biology of pyoverdines, Pseudomonas primary siderophores. Cézard C; Farvacques N; Sonnet P Curr Med Chem; 2015; 22(2):165-86. PubMed ID: 25312210 [TBL] [Abstract][Full Text] [Related]
9. Pharmacodynamic Profiling of a Siderophore-Conjugated Monocarbam in Pseudomonas aeruginosa: Assessing the Risk for Resistance and Attenuated Efficacy. Kim A; Kutschke A; Ehmann DE; Patey SA; Crandon JL; Gorseth E; Miller AA; McLaughlin RE; Blinn CM; Chen A; Nayar AS; Dangel B; Tsai AS; Rooney MT; Murphy-Benenato KE; Eakin AE; Nicolau DP Antimicrob Agents Chemother; 2015 Dec; 59(12):7743-52. PubMed ID: 26438502 [TBL] [Abstract][Full Text] [Related]
10. Nanoscale zero-valent iron reverses resistance of Pseudomonas aeruginosa to chloramphenicol. Wang Y; Lu K; Zhou Z; Wang Y; Shen J; Huang D; Xu Y; Wang M J Hazard Mater; 2024 Jul; 473():134698. PubMed ID: 38788587 [TBL] [Abstract][Full Text] [Related]
11. Biosynthesis of Iron Oxide Nanoparticles by Marine Attea SA; Ghareeb MA; Kelany AK; Elhakim HKA; Allemailem KS; Bukhari SI; Rashidi FB; Hamed AA Molecules; 2024 Oct; 29(19):. PubMed ID: 39407712 [TBL] [Abstract][Full Text] [Related]
12. Cloning and characterization of pvdS, a gene required for pyoverdine synthesis in Pseudomonas aeruginosa: PvdS is probably an alternative sigma factor. Cunliffe HE; Merriman TR; Lamont IL J Bacteriol; 1995 May; 177(10):2744-50. PubMed ID: 7751284 [TBL] [Abstract][Full Text] [Related]
13. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Mislin GL; Schalk IJ Metallomics; 2014 Mar; 6(3):408-20. PubMed ID: 24481292 [TBL] [Abstract][Full Text] [Related]
14. Biogenic iron-silver nanoparticles inhibit bacterial biofilm formation due to Ag Cusimano MG; Ardizzone F; Nasillo G; Gallo M; Sfriso A; Martino-Chillura D; Schillaci D; Baldi F; Gallo G Appl Microbiol Biotechnol; 2020 Jul; 104(14):6325-6336. PubMed ID: 32462243 [TBL] [Abstract][Full Text] [Related]
16. Bacterial resistance to silver nanoparticles and how to overcome it. Panáček A; Kvítek L; Smékalová M; Večeřová R; Kolář M; Röderová M; Dyčka F; Šebela M; Prucek R; Tomanec O; Zbořil R Nat Nanotechnol; 2018 Jan; 13(1):65-71. PubMed ID: 29203912 [TBL] [Abstract][Full Text] [Related]
17. Inactivation of Pseudomonas aeruginosa by Chitosan Coated Iron Oxide Nanoparticles. Mukherjee M; De S Recent Pat Biotechnol; 2016; 10(1):133-139. PubMed ID: 27494734 [TBL] [Abstract][Full Text] [Related]
18. Effects of Silver Nanoparticles on Multiple Drug-Resistant Strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected Goats: An Alternative Approach for Antimicrobial Therapy. Yuan YG; Peng QL; Gurunathan S Int J Mol Sci; 2017 Mar; 18(3):. PubMed ID: 28272303 [TBL] [Abstract][Full Text] [Related]
20. Transcriptional control of the pvdS iron starvation sigma factor gene by the master regulator of sulfur metabolism CysB in Pseudomonas aeruginosa. Imperi F; Tiburzi F; Fimia GM; Visca P Environ Microbiol; 2010 Jun; 12(6):1630-42. PubMed ID: 20370820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]