These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31514056)

  • 1. Lamellar structure/processing relationships and compressive properties of porous Ti6Al4V alloys fabricated by freeze casting.
    Li F; Xue X; Jia T; Dang W; Zhao K; Tang Y
    J Mech Behav Biomed Mater; 2020 Jan; 101():103424. PubMed ID: 31514056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compressive mechanical compatibility of anisotropic porous Ti6Al4V alloys in the range of physiological strain rate for cortical bone implant applications.
    Li F; Li J; Kou H; Huang T; Zhou L
    J Mater Sci Mater Med; 2015 Sep; 26(9):233. PubMed ID: 26384823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pore structures and mechanical properties of porous titanium scaffolds by bidirectional freeze casting.
    Yan L; Wu J; Zhang L; Liu X; Zhou K; Su B
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():335-340. PubMed ID: 28415469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Porous Nb-Ti-Ta alloy scaffolds for bone tissue engineering: Fabrication, mechanical properties and in vitro/vivo biocompatibility.
    Liu J; Ruan J; Chang L; Yang H; Ruan W
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():503-512. PubMed ID: 28576015
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation and properties of porous Ti-10Mo alloy by selective laser sintering.
    Xie F; He X; Lu X; Cao S; Qu X
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1085-90. PubMed ID: 23827546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication, pore structure and compressive behavior of anisotropic porous titanium for human trabecular bone implant applications.
    Li F; Li J; Xu G; Liu G; Kou H; Zhou L
    J Mech Behav Biomed Mater; 2015 Jun; 46():104-14. PubMed ID: 25778351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gelatin freeze casting of biomimetic titanium alloy with anisotropic and gradient pore structure.
    Zhang L; Le Coz-Botrel R; Beddoes C; Sjöström T; Su B
    Biomed Mater; 2017 Jan; 12(1):015014. PubMed ID: 28094241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cancellous bone from porous Ti6Al4V by multiple coating technique.
    Li JP; Li SH; Van Blitterswijk CA; de Groot K
    J Mater Sci Mater Med; 2006 Feb; 17(2):179-85. PubMed ID: 16502251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reverse freeze casting: a new method for fabricating highly porous titanium scaffolds with aligned large pores.
    Yook SW; Jung HD; Park CH; Shin KH; Koh YH; Estrin Y; Kim HE
    Acta Biomater; 2012 Jul; 8(6):2401-10. PubMed ID: 22421310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous Ti6Al4V alloys with enhanced normalized fatigue strength for biomedical applications.
    Li F; Li J; Kou H; Zhou L
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():485-488. PubMed ID: 26706555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and properties of biomedical porous titanium alloys by gelcasting.
    Yang D; Shao H; Guo Z; Lin T; Fan L
    Biomed Mater; 2011 Aug; 6(4):045010. PubMed ID: 21747152
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro and in vivo comparisons of the porous Ti6Al4V alloys fabricated by the selective laser melting technique and a new sintering technique.
    Li J; Li Z; Shi Y; Wang H; Li R; Tu J; Jin G
    J Mech Behav Biomed Mater; 2019 Mar; 91():149-158. PubMed ID: 30579112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Mo contents on the microstructure, properties and cytocompatibility of the microwave sintered porous Ti-Mo alloys.
    Xu JL; Tao SC; Bao LZ; Luo JM; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():156-165. PubMed ID: 30678900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical behavior of a titanium alloy scaffold mimicking trabecular structure.
    Zhang C; Zhang L; Liu L; Lv L; Gao L; Liu N; Wang X; Ye J
    J Orthop Surg Res; 2020 Feb; 15(1):40. PubMed ID: 32028970
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical and Biological Properties of a Biodegradable Mg-Zn-Ca Porous Alloy.
    Zhang YQ; Li Y; Liu H; Bai J; Bao NR; Zhang Y; He P; Zhao JN; Tao L; Xue F; Zhou GX; Fan GT
    Orthop Surg; 2018 May; 10(2):160-168. PubMed ID: 29767463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microstructure, mechanical properties, degradation behavior, and biocompatibility of porous Fe-Mn alloys fabricated by sponge impregnation and sintering techniques.
    Liu P; Zhang D; Dai Y; Lin J; Li Y; Wen C
    Acta Biomater; 2020 Sep; 114():485-496. PubMed ID: 32738505
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering.
    Xu JL; Bao LZ; Liu AH; Jin XJ; Tong YX; Luo JM; Zhong ZC; Zheng YF
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():387-93. PubMed ID: 25492002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of rheological properties on ice-templated porous hydroxyapatite ceramics.
    Zhang Y; Zhou K; Bao Y; Zhang D
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):340-6. PubMed ID: 25428079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.