BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31514060)

  • 1. Single-molecule chemiluminescent photosensitizer for a self-activating and tumor-selective photodynamic therapy of cancer.
    Pinto da Silva L; Núnez-Montenegro A; Magalhães CM; Ferreira PJO; Duarte D; González-Berdullas P; Rodríguez-Borges JE; Vale N; Esteves da Silva JCG
    Eur J Med Chem; 2019 Dec; 183():111683. PubMed ID: 31514060
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the Combination of Self-Activating Photodynamic Therapy and Chemotherapy for Cancer Treatment.
    Pinto da Silva L; Magalhães CM; Núñez-Montenegro A; Ferreira PJO; Duarte D; Rodríguez-Borges JE; Vale N; Esteves da Silva JCG
    Biomolecules; 2019 Aug; 9(8):. PubMed ID: 31434290
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Modality for Cancer Treatment--Nanoparticle Mediated Microwave Induced Photodynamic Therapy.
    Yao M; Ma L; Li L; Zhang J; Lim Rx; Chen W; Zhang Y
    J Biomed Nanotechnol; 2016 Oct; 12(10):1835-51. PubMed ID: 29359896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pyridone-containing phenalenone-based photosensitizer working both under light and in the dark for photodynamic therapy.
    Jing Y; Xu Q; Chen M; Shao X
    Bioorg Med Chem; 2019 Jun; 27(11):2201-2208. PubMed ID: 31040051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy-atomic construction of photosensitizer nanoparticles for enhanced photodynamic therapy of cancer.
    Lim CK; Shin J; Lee YD; Kim J; Park H; Kwon IC; Kim S
    Small; 2011 Jan; 7(1):112-8. PubMed ID: 21132707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo detection of chemiluminescence to monitor photodynamic threshold dose for tumor treatment.
    Wei Y; Song J; Chen Q
    Photochem Photobiol Sci; 2011 Jun; 10(6):1066-71. PubMed ID: 21416074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Receptor selective ruthenium-somatostatin photosensitizer for cancer targeted photodynamic applications.
    Wang T; Zabarska N; Wu Y; Lamla M; Fischer S; Monczak K; Ng DY; Rau S; Weil T
    Chem Commun (Camb); 2015 Aug; 51(63):12552-5. PubMed ID: 26153573
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Riboflavin-based carbon dots with high singlet oxygen generation for photodynamic therapy.
    Yue J; Li L; Jiang C; Mei Q; Dong WF; Yan R
    J Mater Chem B; 2021 Oct; 9(38):7972-7978. PubMed ID: 34338706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemiluminescence and Bioluminescence as an Excitation Source in the Photodynamic Therapy of Cancer: A Critical Review.
    Magalhães CM; Esteves da Silva JC; Pinto da Silva L
    Chemphyschem; 2016 Aug; 17(15):2286-94. PubMed ID: 27129132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic system with light intensity filters facilitating the application of photodynamic therapy for high-throughput drug screening.
    Lee R; Lee J; Kim KB; Kim J
    Photodiagnosis Photodyn Ther; 2022 Jun; 38():102812. PubMed ID: 35304312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near-IR absorbing BODIPY derivatives as glutathione-activated photosensitizers for selective photodynamic action.
    Turan IS; Cakmak FP; Yildirim DC; Cetin-Atalay R; Akkaya EU
    Chemistry; 2014 Dec; 20(49):16088-92. PubMed ID: 25345802
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation.
    Zheng G; Chen J; Stefflova K; Jarvi M; Li H; Wilson BC
    Proc Natl Acad Sci U S A; 2007 May; 104(21):8989-94. PubMed ID: 17502620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeted Delivery of a Mannose-Conjugated BODIPY Photosensitizer by Nanomicelles for Photodynamic Breast Cancer Therapy.
    Zhang Q; Cai Y; Li QY; Hao LN; Ma Z; Wang XJ; Yin J
    Chemistry; 2017 Oct; 23(57):14307-14315. PubMed ID: 28753238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activity of G-ROS and the predominant role of Type II reaction in the photodynamic therapy using 9-hydroxypheophorbide-α for HeLa cell lines.
    Ahn JC; Chung PS
    Gen Physiol Biophys; 2012 Sep; 31(3):343-50. PubMed ID: 23047947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imidazole-modified porphyrin as a pH-responsive sensitizer for cancer photodynamic therapy.
    Zhu X; Lu W; Zhang Y; Reed A; Newton B; Fan Z; Yu H; Ray PC; Gao R
    Chem Commun (Camb); 2011 Oct; 47(37):10311-3. PubMed ID: 21853198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible light-induced singlet oxygen-mediated intracellular disassembly of polymeric micelles co-loaded with a photosensitizer and an anticancer drug for enhanced photodynamic therapy.
    Saravanakumar G; Lee J; Kim J; Kim WJ
    Chem Commun (Camb); 2015 Jun; 51(49):9995-8. PubMed ID: 25998105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A next-generation bifunctional photosensitizer with improved water-solubility for photodynamic therapy and diagnosis.
    Nishie H; Kataoka H; Yano S; Kikuchi JI; Hayashi N; Narumi A; Nomoto A; Kubota E; Joh T
    Oncotarget; 2016 Nov; 7(45):74259-74268. PubMed ID: 27708235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and biological evaluation of 17
    Zhu W; Wang LX; Chen DY; Gao YH; Yan YJ; Wu XF; Wang M; Han YP; Chen ZL
    Bioorg Med Chem Lett; 2018 Sep; 28(16):2784-2788. PubMed ID: 29279274
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon photodynamic therapy.
    Bhawalkar JD; Kumar ND; Zhao CF; Prasad PN
    J Clin Laser Med Surg; 1997; 15(5):201-4. PubMed ID: 9612170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-formulation of a photosensitizer using a DNA tetrahedron and its potential for in vivo photodynamic therapy.
    Kim KR; Bang D; Ahn DR
    Biomater Sci; 2016 Apr; 4(4):605-9. PubMed ID: 26674121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.