BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 31514114)

  • 1. Label-free, real-time on-chip sensing of living cells via grating-coupled surface plasmon resonance.
    Borile G; Rossi S; Filippi A; Gazzola E; Capaldo P; Tregnago C; Pigazzi M; Romanato F
    Biophys Chem; 2019 Nov; 254():106262. PubMed ID: 31514114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grating-Coupled Surface Plasmon Resonance (GC-SPR) Optimization for Phase-Interrogation Biosensing in a Microfluidic Chamber.
    Rossi S; Gazzola E; Capaldo P; Borile G; Romanato F
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29783711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPR and SPR Imaging: Recent Trends in Developing Nanodevices for Detection and Real-Time Monitoring of Biomolecular Events.
    Puiu M; Bala C
    Sensors (Basel); 2016 Jun; 16(6):. PubMed ID: 27314345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A surface acoustic wave (SAW)-enhanced grating-coupling phase-interrogation surface plasmon resonance (SPR) microfluidic biosensor.
    Sonato A; Agostini M; Ruffato G; Gazzola E; Liuni D; Greco G; Travagliati M; Cecchini M; Romanato F
    Lab Chip; 2016 Apr; 16(7):1224-33. PubMed ID: 26932784
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Co-Printed Nanoslit Surface Plasmon Resonance Structure in Microfluidic Device for LMP-1 Detection.
    Lo SC; Li SS; Yang WF; Wu KC; Wei PK; Sheen HJ; Fan YJ
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005049
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-mode surface plasmon resonance sensor chip using a grating 3D-printed prism.
    Lertvachirapaiboon C; Baba A; Shinbo K; Kato K
    Anal Chim Acta; 2021 Feb; 1147():23-29. PubMed ID: 33485581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the molecular mechanisms in cellular processes that elicit a surface plasmon resonance (SPR) response using simultaneous surface plasmon-enhanced fluorescence (SPEF) microscopy.
    Chabot V; Miron Y; Charette PG; Grandbois M
    Biosens Bioelectron; 2013 Dec; 50():125-31. PubMed ID: 23845690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of immunoarrays using a gold grating-based dual mode surface plasmon-coupled emission (SPCE) sensor chip.
    Yuk JS; Gibson GN; Rice JM; Guignon EF; Lynes MA
    Analyst; 2012 Jun; 137(11):2574-81. PubMed ID: 22498719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chip-based digital surface plasmon resonance sensing platform for ultrasensitive biomolecular detection.
    Pan MY; Lee KL; Wang L; Wei PK
    Biosens Bioelectron; 2017 May; 91():580-587. PubMed ID: 28088751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable and sensitive silver surface plasmon resonance imaging sensor using trilayered metallic structures.
    Wang Z; Cheng Z; Singh V; Zheng Z; Wang Y; Li S; Song L; Zhu J
    Anal Chem; 2014 Feb; 86(3):1430-6. PubMed ID: 24372308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of single nucleotide mismatches using a scalable, flexible, and transparent three-dimensional nanostructure-based plasmonic miRNA sensor with high sensitivity.
    Na HK; Wi JS; Son HY; Ok JG; Huh YM; Lee TG
    Biosens Bioelectron; 2018 Aug; 113():39-45. PubMed ID: 29727750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-enhanced optical sensors: a review.
    Li M; Cushing SK; Wu N
    Analyst; 2015 Jan; 140(2):386-406. PubMed ID: 25365823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrasensitive detection of miRNA with an antimonene-based surface plasmon resonance sensor.
    Xue T; Liang W; Li Y; Sun Y; Xiang Y; Zhang Y; Dai Z; Duo Y; Wu L; Qi K; Shivananju BN; Zhang L; Cui X; Zhang H; Bao Q
    Nat Commun; 2019 Jan; 10(1):28. PubMed ID: 30604756
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic monitoring of mechano-sensing of cells by gold nanoslit surface plasmon resonance sensor.
    Wu SH; Lee KL; Weng RH; Zheng ZX; Chiou A; Wei PK
    PLoS One; 2014; 9(2):e89522. PubMed ID: 24586846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-Time Evaluation of Live Cancer Cells by an in Situ Surface Plasmon Resonance and Electrochemical Study.
    Wu C; Rehman FU; Li J; Ye J; Zhang Y; Su M; Jiang H; Wang X
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24848-54. PubMed ID: 26492438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lipopolysaccharides detection on a grating-coupled surface plasmon resonance smartphone biosensor.
    Zhang J; Khan I; Zhang Q; Liu X; Dostalek J; Liedberg B; Wang Y
    Biosens Bioelectron; 2018 Jan; 99():312-317. PubMed ID: 28787676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label-free detection of rare cell in human blood using gold nano slit surface plasmon resonance.
    Mousavi MZ; Chen HY; Hou HS; Chang CY; Roffler S; Wei PK; Cheng JY
    Biosensors (Basel); 2015 Mar; 5(1):98-117. PubMed ID: 25806834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface plasmon resonance spectroscopy for characterisation of membrane protein-ligand interactions and its potential for drug discovery.
    Patching SG
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt A):43-55. PubMed ID: 23665295
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors.
    Roh S; Chung T; Lee B
    Sensors (Basel); 2011; 11(2):1565-88. PubMed ID: 22319369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Extracellular Vesicles by Surface Plasmon Resonance.
    Im H; Yang K; Lee H; Castro CM
    Methods Mol Biol; 2017; 1660():133-141. PubMed ID: 28828653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.