BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 31514145)

  • 21. Microvalve controlled multi-functional microfluidic chip for divisional cell co-culture.
    Li R; Zhang X; Lv X; Geng L; Li Y; Qin K; Deng Y
    Anal Biochem; 2017 Dec; 539():48-53. PubMed ID: 29031457
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Multifunctional microfluidic chip for cancer diagnosis and treatment.
    Guo QR; Zhang LL; Liu JF; Li Z; Li JJ; Zhou WM; Wang H; Li JQ; Liu DY; Yu XY; Zhang JY
    Nanotheranostics; 2021; 5(1):73-89. PubMed ID: 33391976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Design and fabrication of a microfluidic chip for the co-culture of three cell types].
    Wang S; Ge Y; Wu L; Guo H; Yang S; Jin Q
    Sheng Wu Gong Cheng Xue Bao; 2017 Feb; 33(2):294-300. PubMed ID: 28956385
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Surface modifications of COP-based microfluidic devices for improved immobilisation of hydrogel proteins: long-term 3D culture with contractile cell types and ischaemia model.
    González-Lana S; Randelovic T; Ciriza J; López-Valdeolivas M; Monge R; Sánchez-Somolinos C; Ochoa I
    Lab Chip; 2023 May; 23(10):2434-2446. PubMed ID: 37013698
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Non-swelling hydrogel-based microfluidic chips.
    Shen C; Li Y; Wang Y; Meng Q
    Lab Chip; 2019 Dec; 19(23):3962-3973. PubMed ID: 31656966
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D-printed microfluidic chips with patterned, cell-laden hydrogel constructs.
    Knowlton S; Yu CH; Ersoy F; Emadi S; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):025019. PubMed ID: 27321481
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.
    Lee Y; Lee JM; Bae PK; Chung IY; Chung BH; Chung BG
    Electrophoresis; 2015 Apr; 36(7-8):994-1001. PubMed ID: 25641332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A 3D microfluidic platform incorporating methacrylated gelatin hydrogels to study physiological cardiovascular cell-cell interactions.
    Chen MB; Srigunapalan S; Wheeler AR; Simmons CA
    Lab Chip; 2013 Jul; 13(13):2591-8. PubMed ID: 23525275
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrogel microfluidic co-culture device for photothermal therapy and cancer migration.
    Lee JM; Seo HI; Bae JH; Chung BG
    Electrophoresis; 2017 May; 38(9-10):1318-1324. PubMed ID: 28169441
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Application of microfluidic chips in cellular microenvironment].
    Lu S; Cal S; Jiang J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Jun; 27(3):675-9. PubMed ID: 20649042
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic-enabled self-organized tumor model for in vitro cytotoxicity assessment of doxorubicin.
    Yang Y; Liu S; Chen C; Huang H; Tao L; Qian Z; Li W
    Biomed Microdevices; 2020 Sep; 22(4):70. PubMed ID: 32960346
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vessel-on-a-chip with Hydrogel-based Microfluidics.
    Nie J; Gao Q; Wang Y; Zeng J; Zhao H; Sun Y; Shen J; Ramezani H; Fu Z; Liu Z; Xiang M; Fu J; Zhao P; Chen W; He Y
    Small; 2018 Nov; 14(45):e1802368. PubMed ID: 30307698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Orthogonal Screening of Anticancer Drugs Using an Open-Access Microfluidic Tissue Array System.
    Lin D; Li P; Lin J; Shu B; Wang W; Zhang Q; Yang N; Liu D; Xu B
    Anal Chem; 2017 Nov; 89(22):11976-11984. PubMed ID: 29053257
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microfluidic Droplet-Assisted Fabrication of Vessel-Supported Tumors for Preclinical Drug Discovery.
    Wu Y; Zhao Y; Zhou Y; Islam K; Liu Y
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15152-15161. PubMed ID: 36920885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid spheroid clearing on a microfluidic chip.
    Silva Santisteban T; Rabajania O; Kalinina I; Robinson S; Meier M
    Lab Chip; 2017 Dec; 18(1):153-161. PubMed ID: 29192297
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Establishing Single-Cell Based Co-Cultures in a Deterministic Manner with a Microfluidic Chip.
    He CK; Chen YW; Wang SH; Hsu CH
    J Vis Exp; 2019 Sep; (151):. PubMed ID: 31609349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cancer-on-a-chip for Drug Screening.
    Lee IC
    Curr Pharm Des; 2018; 24(45):5407-5418. PubMed ID: 30727877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of a Microfluidic Array to Study Drug Response in Breast Cancer.
    Virumbrales-Muñoz M; Livingston MK; Farooqui M; Skala MC; Beebe DJ; Ayuso JM
    Molecules; 2019 Nov; 24(23):. PubMed ID: 31801265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An on-chip microfluidic pressure regulator that facilitates reproducible loading of cells and hydrogels into microphysiological system platforms.
    Wang X; Phan DTT; Zhao D; George SC; Hughes CCW; Lee AP
    Lab Chip; 2016 Mar; 16(5):868-876. PubMed ID: 26879519
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mimicking the Acute Myeloid Leukemia Niche for Molecular Study and Drug Screening.
    Houshmand M; Soleimani M; Atashi A; Saglio G; Abdollahi M; Nikougoftar Zarif M
    Tissue Eng Part C Methods; 2017 Feb; 23(2):72-85. PubMed ID: 28007011
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.