These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 31514147)

  • 1. Oligo Design with Single Primer Binding Site for High Capacity DNA-Based Data Storage.
    Wang Y; Noor-A-Rahim M; Zhang J; Gunawan E; Guan YL; Poh CL
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2176-2182. PubMed ID: 31514147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High capacity DNA data storage with variable-length Oligonucleotides using repeat accumulate code and hybrid mapping.
    Wang Y; Noor-A-Rahim M; Zhang J; Gunawan E; Guan YL; Poh CL
    J Biol Eng; 2019; 13():89. PubMed ID: 31832092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Bias Manipulation of DNA Oligo Pool for Robust Data Storage.
    Gao Y; Chen X; Qiao H; Ke Y; Qi H
    ACS Synth Biol; 2020 Dec; 9(12):3344-3352. PubMed ID: 33185422
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combinatorial PCR Method for Efficient, Selective Oligo Retrieval from Complex Oligo Pools.
    Winston C; Organick L; Ward D; Ceze L; Strauss K; Chen YJ
    ACS Synth Biol; 2022 May; 11(5):1727-1734. PubMed ID: 35191684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiple errors correction for position-limited DNA sequences with GC balance and no homopolymer for DNA-based data storage.
    Li X; Chen M; Wu H
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36410731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA Fountain enables a robust and efficient storage architecture.
    Erlich Y; Zielinski D
    Science; 2017 Mar; 355(6328):950-954. PubMed ID: 28254941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Random access in large-scale DNA data storage.
    Organick L; Ang SD; Chen YJ; Lopez R; Yekhanin S; Makarychev K; Racz MZ; Kamath G; Gopalan P; Nguyen B; Takahashi CN; Newman S; Parker HY; Rashtchian C; Stewart K; Gupta G; Carlson R; Mulligan J; Carmean D; Seelig G; Ceze L; Strauss K
    Nat Biotechnol; 2018 Mar; 36(3):242-248. PubMed ID: 29457795
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential for enlarging DNA memory: the validity of experimental operations of scaled-up nested primer molecular memory.
    Kashiwamura S; Yamamoto M; Kameda A; Shiba T; Ohuchi A
    Biosystems; 2005 Apr; 80(1):99-112. PubMed ID: 15740839
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Encoding scheme for data storage and retrieval on DNA computers.
    Sharma D; Kumar R; Gupta M; Saxena T
    IET Nanobiotechnol; 2020 Sep; 14(7):635-641. PubMed ID: 33010141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability of HIV type 1 proviral genomes that contain two distinct primer-binding sites.
    Li Y; Kang SM; Morrow CD
    AIDS Res Hum Retroviruses; 1997 Feb; 13(3):253-62. PubMed ID: 9115813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in both the U5 region and the primer-binding site influence the selection of the tRNA used for the initiation of HIV-1 reverse transcription.
    Kang SM; Wakefield JK; Morrow CD
    Virology; 1996 Aug; 222(2):401-14. PubMed ID: 8806524
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA molecules can drive the assembly of other DNA molecules into specific four-stranded structures.
    Marco-Haviv Y; Baran N; Manor H
    J Mol Biol; 1999 Feb; 286(1):45-56. PubMed ID: 9931248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of phage phi 29 assembly by antisense oligonucleotides targeting viral pRNA essential for DNA packaging.
    Zhang C; Garver K; Guo P
    Virology; 1995 Aug; 211(2):568-76. PubMed ID: 7645260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of alterations of primer-binding site sequences on human immunodeficiency virus type 1 replication.
    Li X; Mak J; Arts EJ; Gu Z; Kleiman L; Wainberg MA; Parniak MA
    J Virol; 1994 Oct; 68(10):6198-206. PubMed ID: 7521916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards practical, high-capacity, low-maintenance information storage in synthesized DNA.
    Goldman N; Bertone P; Chen S; Dessimoz C; LeProust EM; Sipos B; Birney E
    Nature; 2013 Feb; 494(7435):77-80. PubMed ID: 23354052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly of Reusable DNA Blocks for Data Storage Using the Principle of Movable Type Printing.
    Xu C; Ma B; Dong X; Lei L; Hao Q; Zhao C; Liu H
    ACS Appl Mater Interfaces; 2023 May; 15(20):24097-24108. PubMed ID: 37184884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local conformations and competitive binding affinities of single- and double-stranded primer-template DNA at the polymerization and editing active sites of DNA polymerases.
    Datta K; Johnson NP; LiCata VJ; von Hippel PH
    J Biol Chem; 2009 Jun; 284(25):17180-17193. PubMed ID: 19411253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the physical limits of reliable DNA data retrieval.
    Organick L; Chen YJ; Dumas Ang S; Lopez R; Liu X; Strauss K; Ceze L
    Nat Commun; 2020 Jan; 11(1):616. PubMed ID: 32001691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scaling logical density of DNA storage with enzymatically-ligated composite motifs.
    Yan Y; Pinnamaneni N; Chalapati S; Crosbie C; Appuswamy R
    Sci Rep; 2023 Sep; 13(1):15978. PubMed ID: 37749195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a bispecific antisense oligonucleotide containing multiple binding sites for the treatment of hormone insensitive prostate tumors.
    Rubenstein M; Tsui P; Guinan P
    Med Hypotheses; 2005; 65(5):905-7. PubMed ID: 16023790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.