BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31515056)

  • 21. Advances in Implantable Optogenetic Technology for Cardiovascular Research and Medicine.
    Madrid MK; Brennan JA; Yin RT; Knight HS; Efimov IR
    Front Physiol; 2021; 12():720190. PubMed ID: 34675815
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Will cardiac optogenetics find the way through the obscure angles of heart physiology?
    Pianca N; Zaglia T; Mongillo M
    Biochem Biophys Res Commun; 2017 Jan; 482(4):515-523. PubMed ID: 27871856
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Flexible and precise control of cardiac rhythm with blue light.
    Cheng Y; Li H; Lei H; Jiang C; Rao P; Wang L; Zhou F; Wang X
    Biochem Biophys Res Commun; 2019 Jun; 514(3):759-764. PubMed ID: 31079932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Channelrhodopsins for Cell-Type Specific Illumination of Cardiac Electrophysiology.
    Fernández MC; Kopton RA; Simon-Chica A; Madl J; Hilgendorf I; Zgierski-Johnston CM; Schneider-Warme F
    Methods Mol Biol; 2021; 2191():287-307. PubMed ID: 32865751
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optogenetic Light Crafting Tools for the Control of Cardiac Arrhythmias.
    Richter C; Christoph J; Lehnart SE; Luther S
    Methods Mol Biol; 2016; 1408():293-302. PubMed ID: 26965131
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical developments for optogenetics.
    Papagiakoumou E
    Biol Cell; 2013 Oct; 105(10):443-64. PubMed ID: 23782010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetic versus Electrical Stimulation of Human Cardiomyocytes: Modeling Insights.
    Williams JC; Entcheva E
    Biophys J; 2015 Apr; 108(8):1934-45. PubMed ID: 25902433
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optogenetic Stimulation Using Anion Channelrhodopsin (GtACR1) Facilitates Termination of Reentrant Arrhythmias With Low Light Energy Requirements: A Computational Study.
    Ochs AR; Karathanos TV; Trayanova NA; Boyle PM
    Front Physiol; 2021; 12():718622. PubMed ID: 34526912
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Novel optogenetics tool: Gt_CCR4, a light-gated cation channel with high reactivity to weak light.
    Hososhima S; Shigemura S; Kandori H; Tsunoda SP
    Biophys Rev; 2020 Apr; 12(2):453-459. PubMed ID: 32166612
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optogenetic control of cardiomyocytes via viral delivery.
    Ambrosi CM; Entcheva E
    Methods Mol Biol; 2014; 1181():215-28. PubMed ID: 25070340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optogenetic Control of Heart Rhythm: Lightly Guiding the Cardiac Pace.
    Dokshokova L; Pianca N; Zaglia T; Mongillo M
    Methods Mol Biol; 2022; 2483():205-229. PubMed ID: 35286678
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optogenetic manipulation of cardiac electrical dynamics using sub-threshold illumination: dissecting the role of cardiac alternans in terminating rapid rhythms.
    Biasci V; Santini L; Marchal GA; Hussaini S; Ferrantini C; Coppini R; Loew LM; Luther S; Campione M; Poggesi C; Pavone FS; Cerbai E; Bub G; Sacconi L
    Basic Res Cardiol; 2022 Apr; 117(1):25. PubMed ID: 35488105
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optogenetic Stimulation of Primary Cardiomyocytes Expressing ChR2.
    Keshmiri Neghab H; Soheilifar MH; Saboury AA; Goliaei B; Hong J; Esmaeeli Djavid G
    J Lasers Med Sci; 2021; 12():e32. PubMed ID: 34733755
    [No Abstract]   [Full Text] [Related]  

  • 34. Real-time optical manipulation of cardiac conduction in intact hearts.
    Scardigli M; Müllenbroich C; Margoni E; Cannazzaro S; Crocini C; Ferrantini C; Coppini R; Yan P; Loew LM; Campione M; Bocchi L; Giulietti D; Cerbai E; Poggesi C; Bub G; Pavone FS; Sacconi L
    J Physiol; 2018 Sep; 596(17):3841-3858. PubMed ID: 29989169
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spot light on skeletal muscles: optogenetic stimulation to understand and restore skeletal muscle function.
    van Bremen T; Send T; Sasse P; Bruegmann T
    J Muscle Res Cell Motil; 2017 Aug; 38(3-4):331-337. PubMed ID: 28918572
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Arrays of microscopic organic LEDs for high-resolution optogenetics.
    Steude A; Witts EC; Miles GB; Gather MC
    Sci Adv; 2016 May; 2(5):e1600061. PubMed ID: 27386540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cardiac optogenetics.
    Abilez OJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1386-9. PubMed ID: 23366158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
    Hight AE; Kozin ED; Darrow K; Lehmann A; Boyden E; Brown MC; Lee DJ
    Hear Res; 2015 Apr; 322():235-41. PubMed ID: 25598479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use of channelrhodopsin for activation of CNS neurons.
    Britt JP; McDevitt RA; Bonci A
    Curr Protoc Neurosci; 2012; Chapter 2():Unit2.16. PubMed ID: 23042500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cardiac Optogenetics: 2018.
    Boyle PM; Karathanos TV; Trayanova NA
    JACC Clin Electrophysiol; 2018 Feb; 4(2):155-167. PubMed ID: 29749932
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.