BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31515531)

  • 1. The fitness cost of mismatch repair mutators in Saccharomyces cerevisiae: partitioning the mutational load.
    Galeota-Sprung B; Guindon B; Sniegowski P
    Heredity (Edinb); 2020 Jan; 124(1):50-61. PubMed ID: 31515531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutational load and the transition between diploidy and haploidy in experimental populations of the yeast Saccharomyces cerevisiae.
    Sliwa P; Kluz J; Korona R
    Genetica; 2004 Jul; 121(3):285-93. PubMed ID: 15521427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accelerating Mutational Load Is Not Due to Synergistic Epistasis or Mutator Alleles in Mutation Accumulation Lines of Yeast.
    Jasmin JN; Lenormand T
    Genetics; 2016 Feb; 202(2):751-63. PubMed ID: 26596348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Salt Stress on Mutation and Genetic Architecture for Fitness Components in
    Kozela C; Johnston MO
    G3 (Bethesda); 2020 Oct; 10(10):3831-3842. PubMed ID: 32847816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haploids adapt faster than diploids across a range of environments.
    Gerstein AC; Cleathero LA; Mandegar MA; Otto SP
    J Evol Biol; 2011 Mar; 24(3):531-40. PubMed ID: 21159002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high frequency of beneficial mutations across multiple fitness components in Saccharomyces cerevisiae.
    Hall DW; Joseph SB
    Genetics; 2010 Aug; 185(4):1397-409. PubMed ID: 20516495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The genome-wide rate and spectrum of spontaneous mutations differ between haploid and diploid yeast.
    Sharp NP; Sandell L; James CG; Otto SP
    Proc Natl Acad Sci U S A; 2018 May; 115(22):E5046-E5055. PubMed ID: 29760081
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryptic fitness advantage: diploids invade haploid populations despite lacking any apparent advantage as measured by standard fitness assays.
    Gerstein AC; Otto SP
    PLoS One; 2011; 6(12):e26599. PubMed ID: 22174734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haploidy, diploidy and evolution of antifungal drug resistance in Saccharomyces cerevisiae.
    Anderson JB; Sirjusingh C; Ricker N
    Genetics; 2004 Dec; 168(4):1915-23. PubMed ID: 15371350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational effects depend on ploidy level: all else is not equal.
    Gerstein AC
    Biol Lett; 2013 Feb; 9(1):20120614. PubMed ID: 23054913
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental studies on ploidy evolution in yeast.
    Zeyl C
    FEMS Microbiol Lett; 2004 Apr; 233(2):187-92. PubMed ID: 15108721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overdominant and partially dominant mutations drive clonal adaptation in diploid Saccharomyces cerevisiae.
    Aggeli D; Marad DA; Liu X; Buskirk SW; Levy SF; Lang GI
    Genetics; 2022 May; 221(2):. PubMed ID: 35435209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diploidy and the selective advantage for sexual reproduction in unicellular organisms.
    Kleiman M; Tannenbaum E
    Theory Biosci; 2009 Nov; 128(4):249-85. PubMed ID: 19902285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation rates, spectra, and genome-wide distribution of spontaneous mutations in mismatch repair deficient yeast.
    Lang GI; Parsons L; Gammie AE
    G3 (Bethesda); 2013 Sep; 3(9):1453-65. PubMed ID: 23821616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA replication error-induced extinction of diploid yeast.
    Herr AJ; Kennedy SR; Knowels GM; Schultz EM; Preston BD
    Genetics; 2014 Mar; 196(3):677-91. PubMed ID: 24388879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of haploid and diploid populations reveals common, strong, and variable pleiotropic effects in non-home environments.
    Chen V; Johnson MS; Hérissant L; Humphrey PT; Yuan DC; Li Y; Agarwala A; Hoelscher SB; Petrov DA; Desai MM; Sherlock G
    Elife; 2023 Oct; 12():. PubMed ID: 37861305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental stress and mutational load in diploid strains of the yeast Saccharomyces cerevisiae.
    Szafraniec K; Borts RH; Korona R
    Proc Natl Acad Sci U S A; 2001 Jan; 98(3):1107-12. PubMed ID: 11158602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of haploid-diploid life cycles when haploid and diploid fitnesses are not equal.
    Scott MF; Rescan M
    Evolution; 2017 Feb; 71(2):215-226. PubMed ID: 27859032
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unpredictable fitness transitions between haploid and diploid strains of the genetically loaded yeast Saccharomyces cerevisiae.
    Korona R
    Genetics; 1999 Jan; 151(1):77-85. PubMed ID: 9872949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of haploid selection in predominantly diploid organisms.
    Otto SP; Scott MF; Immler S
    Proc Natl Acad Sci U S A; 2015 Dec; 112(52):15952-7. PubMed ID: 26669442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.