These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 31515668)
1. Downregulation of SRSF3 by antisense oligonucleotides sensitizes oral squamous cell carcinoma and breast cancer cells to paclitaxel treatment. Sun Y; Yan L; Guo J; Shao J; Jia R Cancer Chemother Pharmacol; 2019 Nov; 84(5):1133-1143. PubMed ID: 31515668 [TBL] [Abstract][Full Text] [Related]
2. Inclusion of hnRNP L Alternative Exon 7 Is Associated with Good Prognosis and Inhibited by Oncogene SRSF3 in Head and Neck Squamous Cell Carcinoma. Xu L; Shen J; Jia J; Jia R Biomed Res Int; 2019; 2019():9612425. PubMed ID: 31828152 [TBL] [Abstract][Full Text] [Related]
3. SRSF5 functions as a novel oncogenic splicing factor and is upregulated by oncogene SRSF3 in oral squamous cell carcinoma. Yang S; Jia R; Bian Z Biochim Biophys Acta Mol Cell Res; 2018 Sep; 1865(9):1161-1172. PubMed ID: 29857020 [TBL] [Abstract][Full Text] [Related]
4. HnRNP L is important for the expression of oncogene SRSF3 and oncogenic potential of oral squamous cell carcinoma cells. Jia R; Zhang S; Liu M; Zhang Y; Liu Y; Fan M; Guo J Sci Rep; 2016 Nov; 6():35976. PubMed ID: 27808105 [TBL] [Abstract][Full Text] [Related]
5. Down-Regulation of Nucleolar and Spindle-Associated Protein 1 (NUSAP1) Expression Suppresses Tumor and Cell Proliferation and Enhances Anti-Tumor Effect of Paclitaxel in Oral Squamous Cell Carcinoma. Okamoto A; Higo M; Shiiba M; Nakashima D; Koyama T; Miyamoto I; Kasama H; Kasamatsu A; Ogawara K; Yokoe H; Tanzawa H; Uzawa K PLoS One; 2015; 10(11):e0142252. PubMed ID: 26554377 [TBL] [Abstract][Full Text] [Related]
6. Expression of SRSF3 is Correlated with Carcinogenesis and Progression of Oral Squamous Cell Carcinoma. Peiqi L; Zhaozhong G; Yaotian Y; Jun J; Jihua G; Rong J Int J Med Sci; 2016; 13(7):533-9. PubMed ID: 27429590 [TBL] [Abstract][Full Text] [Related]
7. Oncogene SRSF3 suppresses autophagy via inhibiting BECN1 expression. Zhou L; Guo J; Jia R Biochem Biophys Res Commun; 2019 Feb; 509(4):966-972. PubMed ID: 30654935 [TBL] [Abstract][Full Text] [Related]
8. Paclitaxel in combination with cetuximab exerts antitumor effect by suppressing NF-κB activity in human oral squamous cell carcinoma cell lines. Harada K; Ferdous T; Kobayashi H; Ueyama Y Int J Oncol; 2014 Dec; 45(6):2439-45. PubMed ID: 25230791 [TBL] [Abstract][Full Text] [Related]
9. PTBP1 and PTBP2 impaired autoregulation of SRSF3 in cancer cells. Guo J; Jia J; Jia R Sci Rep; 2015 Sep; 5():14548. PubMed ID: 26416554 [TBL] [Abstract][Full Text] [Related]
10. Exploring serine-arginine rich splicing factors: potential predictive markers for dysregulation in oral cancer. Sharma S; Mittal M; Shukla A; Khan J; Dinand V; Saluja D BMC Cancer; 2024 Sep; 24(1):1094. PubMed ID: 39227899 [TBL] [Abstract][Full Text] [Related]
11. An anti-PD-1 antisense oligonucleotide promotes the expression of soluble PD-1 by blocking the interaction between SRSF3 and an exonic splicing enhancer of PD-1 exon 3. Wang X; Yan L; Guo J; Jia R Int Immunopharmacol; 2024 Jan; 126():111280. PubMed ID: 38043270 [TBL] [Abstract][Full Text] [Related]
12. SRSF3 suppresses RCC tumorigenesis and progression via regulating SP4 alternative splicing. Zhang L; Zhang H; Tang Y; Dai C; Zheng J Biochim Biophys Acta Mol Cell Res; 2024 Dec; 1871(8):119841. PubMed ID: 39222664 [TBL] [Abstract][Full Text] [Related]
13. Paclitaxel Potentiates the Anticancer Effect of Cetuximab by Enhancing Antibody-Dependent Cellular Cytotoxicity on Oral Squamous Cell Carcinoma Cells In Vitro. Sawatani Y; Komiyama Y; Nakashiro KI; Uchida D; Fukumoto C; Shimura M; Hasegawa T; Kamimura R; Hitomi-Koide M; Hyodo T; Kawamata H Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32878053 [TBL] [Abstract][Full Text] [Related]
14. miR-21 inhibitor sensitizes human OSCC cells to cisplatin. Wang W; Songlin P; Sun Y; Zhang B; Jinhui W Mol Biol Rep; 2012 May; 39(5):5481-5. PubMed ID: 22249446 [TBL] [Abstract][Full Text] [Related]
15. Intronic miR-6741-3p targets the oncogene SRSF3: Implications for oral squamous cell carcinoma pathogenesis. More DA; Singh N; Mishra R; Muralidharan HP; Gopinath KS; Gopal C; Kumar A PLoS One; 2024; 19(5):e0296565. PubMed ID: 38781195 [TBL] [Abstract][Full Text] [Related]
16. SRSF3-Regulated RNA Alternative Splicing Promotes Glioblastoma Tumorigenicity by Affecting Multiple Cellular Processes. Song X; Wan X; Huang T; Zeng C; Sastry N; Wu B; James CD; Horbinski C; Nakano I; Zhang W; Hu B; Cheng SY Cancer Res; 2019 Oct; 79(20):5288-5301. PubMed ID: 31462429 [TBL] [Abstract][Full Text] [Related]
17. Serine/Arginine-Rich Splicing Factor 3 Modulates the Alternative Splicing of Cytoplasmic Polyadenylation Element Binding Protein 2. DeLigio JT; Stevens SC; Nazario-Muñoz GS; MacKnight HP; Doe KK; Chalfant CE; Park MA Mol Cancer Res; 2019 Sep; 17(9):1920-1930. PubMed ID: 31138601 [TBL] [Abstract][Full Text] [Related]
18. Serine/arginine-rich splicing factor 3 (SRSF3) regulates homologous recombination-mediated DNA repair. He X; Zhang P Mol Cancer; 2015 Aug; 14():158. PubMed ID: 26282282 [TBL] [Abstract][Full Text] [Related]
19. Long noncoding RNA CASC2 promotes paclitaxel resistance in breast cancer through regulation of miR-18a-5p/CDK19. Zheng P; Dong L; Zhang B; Dai J; Zhang Y; Wang Y; Qin S Histochem Cell Biol; 2019 Oct; 152(4):281-291. PubMed ID: 31352515 [TBL] [Abstract][Full Text] [Related]
20. Pathways Related to the Anti-Cancer Effects of Metabolites Derived from Cerrado Biome Native Plants: An Update and Bioinformatics Analysis on Oral Squamous Cell Carcinoma. Xavier GM; Guimarães ALS; de Carvalho Fraga CA; Guimarães TA; de Souza MG; Jones KM; Farias LC Protein Pept Lett; 2021; 28(7):735-749. PubMed ID: 33302827 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]