These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 31515756)

  • 41. Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm.
    Shin YJ; Chang W; Ye JC; Kang E; Oh DY; Lee YJ; Park JH; Kim YH
    Korean J Radiol; 2020 Mar; 21(3):356-364. PubMed ID: 32090528
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Image denoising using deep CNN with batch renormalization.
    Tian C; Xu Y; Zuo W
    Neural Netw; 2020 Jan; 121():461-473. PubMed ID: 31629201
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structurally-sensitive Multi-scale Deep Neural Network for Low-Dose CT Denoising.
    You C; Yang Q; Shan H; Gjesteby L; Li G; Ju S; Zhang Z; Zhao Z; Zhang Y; Wenxiang C; Wang G
    IEEE Access; 2018; 6():41839-41855. PubMed ID: 30906683
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multi-Branch Network for Color Image Denoising Using Dilated Convolution and Attention Mechanisms.
    Duong MT; Nguyen Thi BT; Lee S; Hong MC
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894398
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Iterative quality enhancement via residual-artifact learning networks for low-dose CT.
    Wang Y; Liao Y; Zhang Y; He J; Li S; Bian Z; Zhang H; Gao Y; Meng D; Zuo W; Zeng D; Ma J
    Phys Med Biol; 2018 Oct; 63(21):215004. PubMed ID: 30265251
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Metal artifact reduction on cervical CT images by deep residual learning.
    Huang X; Wang J; Tang F; Zhong T; Zhang Y
    Biomed Eng Online; 2018 Nov; 17(1):175. PubMed ID: 30482231
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Forward Model and Deep Learning Based Iterative Deconvolution for Robust Dynamic CT Perfusion.
    Sudarshan VP; Reddy PK; Gubbi J; Purushothaman B
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():3543-3546. PubMed ID: 34892004
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Computed Tomography (CT) Image Quality Enhancement via a Uniform Framework Integrating Noise Estimation and Super-Resolution Networks.
    Chi J; Zhang Y; Yu X; Wang Y; Wu C
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31366173
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Temporally downsampled cerebral CT perfusion image restoration using deep residual learning.
    Zhu H; Tong D; Zhang L; Wang S; Wu W; Tang H; Chen Y; Luo L; Zhu J; Li B
    Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):193-201. PubMed ID: 31673961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cycle-consistent adversarial denoising network for multiphase coronary CT angiography.
    Kang E; Koo HJ; Yang DH; Seo JB; Ye JC
    Med Phys; 2019 Feb; 46(2):550-562. PubMed ID: 30449055
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A Feature-Enriched Deep Convolutional Neural Network for JPEG Image Compression Artifacts Reduction and its Applications.
    Chen H; He X; Yang H; Qing L; Teng Q
    IEEE Trans Neural Netw Learn Syst; 2022 Jan; 33(1):430-444. PubMed ID: 34793307
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Image quality of ultralow-dose chest CT using deep learning techniques: potential superiority of vendor-agnostic post-processing over vendor-specific techniques.
    Nam JG; Ahn C; Choi H; Hong W; Park J; Kim JH; Goo JM
    Eur Radiol; 2021 Jul; 31(7):5139-5147. PubMed ID: 33415436
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 55. High quality imaging from sparsely sampled computed tomography data with deep learning and wavelet transform in various domains.
    Lee D; Choi S; Kim HJ
    Med Phys; 2019 Jan; 46(1):104-115. PubMed ID: 30362117
    [TBL] [Abstract][Full Text] [Related]  

  • 56. PET image denoising using unsupervised deep learning.
    Cui J; Gong K; Guo N; Wu C; Meng X; Kim K; Zheng K; Wu Z; Fu L; Xu B; Zhu Z; Tian J; Liu H; Li Q
    Eur J Nucl Med Mol Imaging; 2019 Dec; 46(13):2780-2789. PubMed ID: 31468181
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A CT image feature space (CTIS) loss for restoration with deep learning-based methods.
    Zheng A; Liang K; Zhang L; Xing Y
    Phys Med Biol; 2022 Feb; 67(5):. PubMed ID: 35168207
    [No Abstract]   [Full Text] [Related]  

  • 58. Deep convolutional neural network for reduction of contrast-enhanced region on CT images.
    Sumida I; Magome T; Kitamori H; Das IJ; Yamaguchi H; Kizaki H; Aboshi K; Yamashita K; Yamada Y; Seo Y; Isohashi F; Ogawa K
    J Radiat Res; 2019 Oct; 60(5):586-594. PubMed ID: 31125068
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Novel Pulmonary Nodule Detection Model Based on Multi-Step Cascaded Networks.
    Chi J; Zhang S; Yu X; Wu C; Jiang Y
    Sensors (Basel); 2020 Aug; 20(15):. PubMed ID: 32752225
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.