These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 31515844)
1. Genome-wide DNA methylation analysis using next-generation sequencing to reveal candidate genes responsible for boar taint in pigs. Wang X; Kadarmideen HN Anim Genet; 2019 Dec; 50(6):644-659. PubMed ID: 31515844 [TBL] [Abstract][Full Text] [Related]
2. An Epigenome-Wide DNA Methylation Map of Testis in Pigs for Study of Complex Traits. Wang X; Kadarmideen HN Front Genet; 2019; 10():405. PubMed ID: 31114612 [TBL] [Abstract][Full Text] [Related]
3. Characterization of Global DNA Methylation in Different Gene Regions Reveals Candidate Biomarkers in Pigs with High and Low Levels of Boar Taint. Wang X; Kadarmideen HN Vet Sci; 2020 Jun; 7(2):. PubMed ID: 32545802 [TBL] [Abstract][Full Text] [Related]
4. Adult porcine genome-wide DNA methylation patterns support pigs as a biomedical model. Schachtschneider KM; Madsen O; Park C; Rund LA; Groenen MA; Schook LB BMC Genomics; 2015 Oct; 16():743. PubMed ID: 26438392 [TBL] [Abstract][Full Text] [Related]
5. Genome-wide analysis of DNA methylation in pigs using reduced representation bisulfite sequencing. Choi M; Lee J; Le MT; Nguyen DT; Park S; Soundrarajan N; Schachtschneider KM; Kim J; Park JK; Kim JH; Park C DNA Res; 2015 Oct; 22(5):343-55. PubMed ID: 26358297 [TBL] [Abstract][Full Text] [Related]
6. Differential expression and co-expression gene networks reveal candidate biomarkers of boar taint in non-castrated pigs. Drag M; Skinkyté-Juskiené R; Do DN; Kogelman LJA; Kadarmideen HN Sci Rep; 2017 Sep; 7(1):12205. PubMed ID: 28939879 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide DNA methylation profiles changes associated with constant heat stress in pigs as measured by bisulfite sequencing. Hao Y; Cui Y; Gu X Sci Rep; 2016 Jun; 6():27507. PubMed ID: 27264107 [TBL] [Abstract][Full Text] [Related]
8. Molecular microevolution and epigenetic patterns of the long non-coding gene H19 show its potential function in pig domestication and breed divergence. Li C; Wang X; Cai H; Fu Y; Luan Y; Wang W; Xiang H; Li C BMC Evol Biol; 2016 Apr; 16():87. PubMed ID: 27107967 [TBL] [Abstract][Full Text] [Related]
9. DNA methylation patterns vary in boar sperm cells with different levels of DNA fragmentation. Khezri A; Narud B; Stenseth EB; Johannisson A; Myromslien FD; Gaustad AH; Wilson RC; Lyle R; Morrell JM; Kommisrud E; Ahmad R BMC Genomics; 2019 Nov; 20(1):897. PubMed ID: 31775629 [TBL] [Abstract][Full Text] [Related]
10. Characterization of eQTLs associated with androstenone by RNA sequencing in porcine testis. Drag MH; Kogelman LJA; Maribo H; Meinert L; Thomsen PD; Kadarmideen HN Physiol Genomics; 2019 Oct; 51(10):488-499. PubMed ID: 31373884 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide DNA methylation analysis in Chinese Chenghua and Yorkshire pigs. Wang K; Wu P; Wang S; Ji X; Chen D; Jiang A; Xiao W; Gu Y; Jiang Y; Zeng Y; Xu X; Li X; Tang G BMC Genom Data; 2021 Jun; 22(1):21. PubMed ID: 34134626 [TBL] [Abstract][Full Text] [Related]
12. Plant-RRBS, a bisulfite and next-generation sequencing-based methylome profiling method enriching for coverage of cytosine positions. Schmidt M; Van Bel M; Woloszynska M; Slabbinck B; Martens C; De Block M; Coppens F; Van Lijsebettens M BMC Plant Biol; 2017 Jul; 17(1):115. PubMed ID: 28683715 [TBL] [Abstract][Full Text] [Related]
13. A comprehensive evaluation of alignment software for reduced representation bisulfite sequencing data. Sun X; Han Y; Zhou L; Chen E; Lu B; Liu Y; Pan X; Cowley AW; Liang M; Wu Q; Lu Y; Liu P Bioinformatics; 2018 Aug; 34(16):2715-2723. PubMed ID: 29579198 [TBL] [Abstract][Full Text] [Related]
14. Generating Multiple Base-Resolution DNA Methylomes Using Reduced Representation Bisulfite Sequencing. Chatterjee A; Rodger EJ; Stockwell PA; Le Mée G; Morison IM Methods Mol Biol; 2017; 1537():279-298. PubMed ID: 27924600 [TBL] [Abstract][Full Text] [Related]
15. Genetic relationship between boar taint compounds, human nose scores, and reproduction traits in pigs. Mathur PK; ten Napel J; Crump RE; Mulder HA; Knol EF J Anim Sci; 2013 Sep; 91(9):4080-9. PubMed ID: 23825333 [TBL] [Abstract][Full Text] [Related]
16. The DNA methylation profile of liver tumors in C3H mice and identification of differentially methylated regions involved in the regulation of tumorigenic genes. Matsushita J; Okamura K; Nakabayashi K; Suzuki T; Horibe Y; Kawai T; Sakurai T; Yamashita S; Higami Y; Ichihara G; Hata K; Nohara K BMC Cancer; 2018 Mar; 18(1):317. PubMed ID: 29566670 [TBL] [Abstract][Full Text] [Related]
17. Genome-wide methylation sequencing of paired primary and metastatic cell lines identifies common DNA methylation changes and a role for EBF3 as a candidate epigenetic driver of melanoma metastasis. Chatterjee A; Stockwell PA; Ahn A; Rodger EJ; Leichter AL; Eccles MR Oncotarget; 2017 Jan; 8(4):6085-6101. PubMed ID: 28030832 [TBL] [Abstract][Full Text] [Related]
18. Targeted DNA methylation analysis by next-generation sequencing. Masser DR; Stanford DR; Freeman WM J Vis Exp; 2015 Feb; (96):. PubMed ID: 25741966 [TBL] [Abstract][Full Text] [Related]
19. Comparative genome-wide methylation analysis of longissimus dorsi muscles between Japanese black (Wagyu) and Chinese Red Steppes cattle. Fang X; Zhao Z; Yu H; Li G; Jiang P; Yang Y; Yang R; Yu X PLoS One; 2017; 12(8):e0182492. PubMed ID: 28771560 [TBL] [Abstract][Full Text] [Related]
20. Efficiency of different selection strategies against boar taint in pigs. Haberland AM; Luther H; Hofer A; Tholen E; Simianer H; Lind B; Baes C Animal; 2014 Jan; 8(1):11-9. PubMed ID: 24176119 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]