These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31515974)

  • 21. Kinetics of blood flow during healing of excisional full-thickness skin wounds in pigs as monitored by laser speckle perfusion imaging.
    Stewart CJ; Gallant-Behm CL; Forrester K; Tulip J; Hart DA; Bray RC
    Skin Res Technol; 2006 Nov; 12(4):247-53. PubMed ID: 17026655
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modulation of ROS levels in fibroblasts by altering mitochondria regulates the process of wound healing.
    Janda J; Nfonsam V; Calienes F; Sligh JE; Jandova J
    Arch Dermatol Res; 2016 May; 308(4):239-48. PubMed ID: 26873374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In Vivo Imaging of Reactive Oxygen Species in a Murine Wound Model.
    Rabbani PS; Abdou SA; Sultan DL; Kwong J; Duckworth A; Ceradini DJ
    J Vis Exp; 2018 Nov; (141):. PubMed ID: 30507922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficacy of a Nanofabricated Electrospun Wound Matrix in Treating Full-thickness Cutaneous Wounds in a Porcine Model.
    MacEwan MR; MacEwan S; Wright AP; Kovacs TR; Batts J; Zhang L
    Wounds; 2018 Feb; 30(2):E21-E24. PubMed ID: 29481335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On the mechanism of skin wound "contraction": a granulation tissue "knockout" with a normal phenotype.
    Gross J; Farinelli W; Sadow P; Anderson R; Bruns R
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):5982-6. PubMed ID: 7597065
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Different types of ROS-scavenging enzymes are expressed during cutaneous wound repair.
    Steiling H; Munz B; Werner S; Brauchle M
    Exp Cell Res; 1999 Mar; 247(2):484-94. PubMed ID: 10066376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preclosure spectroscopic differences between healed and dehisced traumatic wounds.
    Radowsky JS; Neely R; Forsberg JA; Lisboa FA; Dente CJ; Elster EA; Crane NJ
    PLoS One; 2018; 13(9):e0204453. PubMed ID: 30261011
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Static Langer's line and wound contraction rates according to anatomical regions in a porcine model.
    Kwak M; Son D; Kim J; Han K
    Wound Repair Regen; 2014; 22(5):678-82. PubMed ID: 24942927
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porcine models of cutaneous wound healing.
    Seaton M; Hocking A; Gibran NS
    ILAR J; 2015; 56(1):127-38. PubMed ID: 25991704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reactive Oxygen Species and NOX Enzymes Are Emerging as Key Players in Cutaneous Wound Repair.
    André-Lévigne D; Modarressi A; Pepper MS; Pittet-Cuénod B
    Int J Mol Sci; 2017 Oct; 18(10):. PubMed ID: 29036938
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The impact of first-aid dressing design on healing of porcine partial thickness wounds.
    Wlaschin KF; Ninkovic J; Griesgraber GW; Colak Atan S; Young AJ; Pereira JM; Solberg MJ; Smith G; Parks PJ; McNulty AK; Langer-Anderson DL
    Wound Repair Regen; 2019 Nov; 27(6):622-633. PubMed ID: 31276609
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MicroCT angiography detects vascular formation and regression in skin wound healing.
    Urao N; Okonkwo UA; Fang MM; Zhuang ZW; Koh TJ; DiPietro LA
    Microvasc Res; 2016 Jul; 106():57-66. PubMed ID: 27009591
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Measurement of wound healing by image analysis.
    Ozturk C; Nissannov J; Dubin S; Shi WY; Nichols J; Mark R
    Biomed Sci Instrum; 1995; 31():189-93. PubMed ID: 7654960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Vascularization of Lando
    Qiu X; Wang J; Wang G; Wen H
    J Plast Surg Hand Surg; 2018 Aug; 52(4):204-209. PubMed ID: 29320909
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A sprayable luminescent pH sensor and its use for wound imaging in vivo.
    Schreml S; Meier RJ; Weiß KT; Cattani J; Flittner D; Gehmert S; Wolfbeis OS; Landthaler M; Babilas P
    Exp Dermatol; 2012 Dec; 21(12):951-3. PubMed ID: 23171458
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A mini-pig model for evaluating the efficacy of autologous platelet patches on induced acute full thickness wound healing.
    Tsai HC; Chang GR; Fan HC; Ou-Yang H; Huang LC; Wu SC; Chen CM
    BMC Vet Res; 2019 Jun; 15(1):191. PubMed ID: 31174527
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The microenvironment of wound healing.
    Junker JP; Caterson EJ; Eriksson E
    J Craniofac Surg; 2013 Jan; 24(1):12-6. PubMed ID: 23321873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Novel in vitro approaches for the simulation and analysis of human skin wounds.
    Planz V; Franzen L; Windbergs M
    Skin Pharmacol Physiol; 2015; 28(2):91-6. PubMed ID: 25341368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 2D luminescence imaging of physiological wound oxygenation.
    Schreml S; Meier RJ; Wolfbeis OS; Maisch T; Szeimies RM; Landthaler M; Regensburger J; Santarelli F; Klimant I; Babilas P
    Exp Dermatol; 2011 Jul; 20(7):550-4. PubMed ID: 21443617
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Histological characterization of a delayed wound healing model in pig.
    Bernatchez SF; Parks PJ; Grussing DM; Matalas SL; Nelson GS
    Wound Repair Regen; 1998; 6(3):223-33. PubMed ID: 9776866
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.