BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31516373)

  • 1. Statistical analysis of the occupational radiation doses in three different positron emission tomography-computed tomography centers in Egypt.
    Ahmed IES; Zamzam AMM; Yassin HM
    World J Nucl Med; 2019; 18(3):287-292. PubMed ID: 31516373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurements of occupational exposure for a technologist performing 18F FDG PET scans.
    Biran T; Weininger J; Malchi S; Marciano R; Chisin R
    Health Phys; 2004 Nov; 87(5):539-44. PubMed ID: 15551792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Technologist radiation exposure in routine clinical practice with 18F-FDG PET.
    Guillet B; Quentin P; Waultier S; Bourrelly M; Pisano P; Mundler O
    J Nucl Med Technol; 2005 Sep; 33(3):175-9. PubMed ID: 16145226
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nuclear medicine staff exposure to ionising radiation in
    Pavičar B; Davidović J; Petrović B; Vuleta G; Trivić S; Šajinović V; Egeljić-Mihailović N; Todorović N; Predojević B
    Arh Hig Rada Toksikol; 2021 Sep; 72(3):216-224. PubMed ID: 34587667
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of Radiation Exposure to Workers During [
    Al-Aamria M; Al-Balushia N; Bailey D
    J Med Imaging Radiat Sci; 2019 Dec; 50(4):565-570. PubMed ID: 31447232
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occupational per-patient radiation dose from a conservative protocol for veterinary (18) F-fluorodeoxyglucose positron emission tomography.
    Martinez NE; Kraft SL; Gibbons DS; Arceneaux BK; Stewart JA; Mama KR; Johnson TE
    Vet Radiol Ultrasound; 2012; 53(5):591-7. PubMed ID: 22703227
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of radiation dose received by the radiation worker during F-18 FDG injection process.
    Jha AK; Zade A; Rangarajan V
    Indian J Nucl Med; 2011 Jan; 26(1):11-3. PubMed ID: 21969773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiation exposure of Staff handling
    Mosima L; Muzamhindo N; Lundie M; Summers B
    Health SA; 2023; 28():2211. PubMed ID: 38090472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment of extremity dose for medical staff involved in positron emission tomography/computed tomography imaging: Retrospective study.
    Erdemir RU; Abuzaid MM; Cavli B; Tekin HO; Elshami W
    Medicine (Baltimore); 2023 Oct; 102(43):e35501. PubMed ID: 37904454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Occupational radiation dose of personnel involved in sentinel node biopsy procedure.
    Petrovic B; Vicko F; Radovanovic D; Samac J; Tot A; Radovanovic Z; Ivkovic-Kapicl T; Lukic D; Marjanovic M; Ivanov O
    Phys Med; 2021 Nov; 91():117-120. PubMed ID: 34773831
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigation of radiation protection of medical staff performing medical diagnostic examinations by using PET/CT technique.
    Wrzesień M; Napolska K
    J Radiol Prot; 2015 Mar; 35(1):197-207. PubMed ID: 25647828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ambient and personnel occupational dose assessment in a Hospital's PET/CT center.
    Yin WW; Zheng XW; Wang ZQ; Chen WJ; Tyan YS; Chen TR
    Appl Radiat Isot; 2021 Mar; 169():109466. PubMed ID: 33340787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Occupational radiation exposure of health professionals and cancer risk assessment for Lithuanian nuclear medicine workers.
    Adliene D; Griciene B; Skovorodko K; Laurikaitiene J; Puiso J
    Environ Res; 2020 Apr; 183():109144. PubMed ID: 32028181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiation dose to technicians per nuclear medicine procedure: comparison between technetium-99m, gallium-67, and iodine-131 radiotracers and fluorine-18 fluorodeoxyglucose.
    Chiesa C; De Sanctis V; Crippa F; Schiavini M; Fraigola CE; Bogni A; Pascali C; Decise D; Marchesini R; Bombardieri E
    Eur J Nucl Med; 1997 Nov; 24(11):1380-9. PubMed ID: 9371871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Internal absorbed dose estimation by a TLD method for 18F-FDG and comparison with the dose estimates from whole body PET.
    Deloar HM; Fujiwara T; Shidahara M; Nakamura T; Yamadera A; Itoh M
    Phys Med Biol; 1999 Feb; 44(2):595-606. PubMed ID: 10070803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. THE POTENTIAL TO USE TLD MEASUREMENTS TO VALIDATE THE OCCUPATIONAL RADIATION PROTECTION AT THE DEPARTMENT OF NUCLEAR MEDICINE.
    Nilsson I; Himmelman J; Khan J; Dalmo J
    Radiat Prot Dosimetry; 2021 Oct; 195(3-4):355-362. PubMed ID: 34121124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benefits of adopting good radiation practices in reducing the whole body radiation dose to the nuclear medicine personnel during (18)F-fluorodeoxyglucose positron emission tomography/computed tomography imaging.
    Verma S; Kheruka SC; Maurya AK; Kumar N; Gambhir S; Kumari S
    Indian J Nucl Med; 2016; 31(1):27-30. PubMed ID: 26917890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of Radiation Exposure to Staff and Environment Dose from [18F]-FDG in PET/CT and Cyclotron Center using Thermoluminescent Dosimetry.
    Zargan S; Ghafarian P; Shabestani Monfared A; Sharafi AA; Bakhshayeshkaram M; Ay MR
    J Biomed Phys Eng; 2017 Mar; 7(1):1-12. PubMed ID: 28451574
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation dosimetry of 18F-FDG PET/CT: incorporating exam-specific parameters in dose estimates.
    Quinn B; Dauer Z; Pandit-Taskar N; Schoder H; Dauer LT
    BMC Med Imaging; 2016 Jun; 16(1):41. PubMed ID: 27317478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual dose monitoring of the nuclear medicine departments staff controlled by Central Laboratory for Radiological Protection.
    Szewczak K; Jednoróg S; Krajewski P
    Nucl Med Rev Cent East Eur; 2013; 16(2):62-5. PubMed ID: 24068634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.