These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 31517271)
1. Modulation of the fate of zein nanoparticles by their coating with a Gantrez® AN-thiamine polymer conjugate. Inchaurraga L; Martínez-López AL; Abdulkarim M; Gumbleton M; Quincoces G; Peñuelas I; Martin-Arbella N; Irache JM Int J Pharm X; 2019 Dec; 1():100006. PubMed ID: 31517271 [TBL] [Abstract][Full Text] [Related]
2. Preparation and evaluation of PEG-coated zein nanoparticles for oral drug delivery purposes. Reboredo C; González-Navarro CJ; Martínez-Oharriz C; Martínez-López AL; Irache JM Int J Pharm; 2021 Mar; 597():120287. PubMed ID: 33524523 [TBL] [Abstract][Full Text] [Related]
4. The effect of thiamine-coating nanoparticles on their biodistribution and fate following oral administration. Inchaurraga L; Martínez-López AL; Cattoz B; Griffiths PC; Wilcox M; Pearson JP; Quincoces G; Peñuelas I; Martin-Arbella N; Irache JM Eur J Pharm Sci; 2019 Feb; 128():81-90. PubMed ID: 30472222 [TBL] [Abstract][Full Text] [Related]
5. Zein-based nanocarriers for the oral delivery of insulin. In vivo evaluation in Caenorhabditis elegans. Martínez-López AL; González-Navarro CJ; Vizmanos JL; Irache JM Drug Deliv Transl Res; 2021 Apr; 11(2):647-658. PubMed ID: 33515186 [TBL] [Abstract][Full Text] [Related]
6. In vivo study of the mucus-permeating properties of PEG-coated nanoparticles following oral administration. Inchaurraga L; Martín-Arbella N; Zabaleta V; Quincoces G; Peñuelas I; Irache JM Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):280-9. PubMed ID: 25541441 [TBL] [Abstract][Full Text] [Related]
7. Zein-based nanoparticles for the oral delivery of insulin. Inchaurraga L; Martínez-López AL; Martin-Arbella N; Irache JM Drug Deliv Transl Res; 2020 Dec; 10(6):1601-1611. PubMed ID: 32514704 [TBL] [Abstract][Full Text] [Related]
10. Distribution of thiolated mucoadhesive nanoparticles on intestinal mucosa. Dünnhaupt S; Barthelmes J; Hombach J; Sakloetsakun D; Arkhipova V; Bernkop-Schnürch A Int J Pharm; 2011 Apr; 408(1-2):191-9. PubMed ID: 21295123 [TBL] [Abstract][Full Text] [Related]
11. Nanoparticles from Gantrez-based conjugates for the oral delivery of camptothecin. Huarte J; Espuelas S; Martínez-Oharriz C; Irache JM Int J Pharm X; 2021 Dec; 3():100104. PubMed ID: 34825166 [TBL] [Abstract][Full Text] [Related]
12. Mucus-penetrating nanoparticles made with "mucoadhesive" poly(vinyl alcohol). Popov A; Enlow E; Bourassa J; Chen H Nanomedicine; 2016 Oct; 12(7):1863-1871. PubMed ID: 27112308 [TBL] [Abstract][Full Text] [Related]
13. Development and in vivo evaluation of papain-functionalized nanoparticles. Müller C; Perera G; König V; Bernkop-Schnürch A Eur J Pharm Biopharm; 2014 May; 87(1):125-31. PubMed ID: 24373995 [TBL] [Abstract][Full Text] [Related]
14. Mucus permeating carriers: formulation and characterization of highly densely charged nanoparticles. Pereira de Sousa I; Steiner C; Schmutzler M; Wilcox MD; Veldhuis GJ; Pearson JP; Huck CW; Salvenmoser W; Bernkop-Schnürch A Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):273-9. PubMed ID: 25576256 [TBL] [Abstract][Full Text] [Related]
15. Self-emulsifying peptide drug delivery systems: How to make them highly mucus permeating. Griesser J; Hetényi G; Kadas H; Demarne F; Jannin V; Bernkop-Schnürch A Int J Pharm; 2018 Mar; 538(1-2):159-166. PubMed ID: 29339247 [TBL] [Abstract][Full Text] [Related]
16. Insulin loaded mucus permeating nanoparticles: Addressing the surface characteristics as feature to improve mucus permeation. Pereira de Sousa I; Moser T; Steiner C; Fichtl B; Bernkop-Schnürch A Int J Pharm; 2016 Mar; 500(1-2):236-44. PubMed ID: 26802494 [TBL] [Abstract][Full Text] [Related]
17. Food Protein Based Core-Shell Nanocarriers for Oral Drug Delivery: Effect of Shell Composition on in Vitro and in Vivo Functional Performance of Zein Nanocarriers. Alqahtani MS; Islam MS; Podaralla S; Kaushik RS; Reineke J; Woyengo T; Perumal O Mol Pharm; 2017 Mar; 14(3):757-769. PubMed ID: 28103046 [TBL] [Abstract][Full Text] [Related]
18. Mucus-penetrating solid lipid nanoparticles for the treatment of cystic fibrosis: Proof of concept, challenges and pitfalls. Nafee N; Forier K; Braeckmans K; Schneider M Eur J Pharm Biopharm; 2018 Mar; 124():125-137. PubMed ID: 29291931 [TBL] [Abstract][Full Text] [Related]
19. Interaction of cruciferin-based nanoparticles with Caco-2 cells and Caco-2/HT29-MTX co-cultures. Akbari A; Lavasanifar A; Wu J Acta Biomater; 2017 Dec; 64():249-258. PubMed ID: 29030304 [TBL] [Abstract][Full Text] [Related]
20. Effect of surface chemistry on nanoparticle interaction with gastrointestinal mucus and distribution in the gastrointestinal tract following oral and rectal administration in the mouse. Maisel K; Ensign L; Reddy M; Cone R; Hanes J J Control Release; 2015 Jan; 197():48-57. PubMed ID: 25449804 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]