These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

731 related articles for article (PubMed ID: 31517354)

  • 1. Microfluidic impedance cytometry device with N-shaped electrodes for lateral position measurement of single cells/particles.
    Yang D; Ai Y
    Lab Chip; 2019 Nov; 19(21):3609-3617. PubMed ID: 31517354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impedance-based viscoelastic flow cytometry.
    Serhatlioglu M; Asghari M; Tahsin Guler M; Elbuken C
    Electrophoresis; 2019 Mar; 40(6):906-913. PubMed ID: 30632175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining Particle Size and Position in a Coplanar Electrode Setup Using Measured Opacity for Microfluidic Cytometry.
    de Bruijn DS; Jorissen KFA; Olthuis W; van den Berg A
    Biosensors (Basel); 2021 Sep; 11(10):. PubMed ID: 34677309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Floating-Electrode-Enabled Impedance Cytometry for Single-Cell 3D Localization.
    Fang Q; Feng Y; Zhu J; Huang L; Wang W
    Anal Chem; 2023 Apr; 95(15):6374-6382. PubMed ID: 36996369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple electrical approach to monitor dielectrophoretic focusing of particles flowing in a microchannel.
    Reale R; De Ninno A; Businaro L; Bisegna P; Caselli F
    Electrophoresis; 2019 May; 40(10):1400-1407. PubMed ID: 30661234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes.
    Zhong J; Liang M; Ai Y
    Lab Chip; 2021 Aug; 21(15):2869-2880. PubMed ID: 34236057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coplanar electrode microfluidic chip enabling accurate sheathless impedance cytometry.
    De Ninno A; Errico V; Bertani FR; Businaro L; Bisegna P; Caselli F
    Lab Chip; 2017 Mar; 17(6):1158-1166. PubMed ID: 28225104
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High throughput single-cell and multiple-cell micro-encapsulation.
    Lagus TP; Edd JF
    J Vis Exp; 2012 Jun; (64):e4096. PubMed ID: 22733254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micro-impedance cytometry for detection and analysis of micron-sized particles and bacteria.
    Bernabini C; Holmes D; Morgan H
    Lab Chip; 2011 Feb; 11(3):407-12. PubMed ID: 21060945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A neural network approach for real-time particle/cell characterization in microfluidic impedance cytometry.
    Honrado C; McGrath JS; Reale R; Bisegna P; Swami NS; Caselli F
    Anal Bioanal Chem; 2020 Jun; 412(16):3835-3845. PubMed ID: 32189012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positional dependence of particles and cells in microfluidic electrical impedance flow cytometry: origin, challenges and opportunities.
    Daguerre H; Solsona M; Cottet J; Gauthier M; Renaud P; Bolopion A
    Lab Chip; 2020 Oct; 20(20):3665-3689. PubMed ID: 32914827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single channel layer, single sheath-flow inlet microfluidic flow cytometer with three-dimensional hydrodynamic focusing.
    Lin SC; Yen PW; Peng CC; Tung YC
    Lab Chip; 2012 Sep; 12(17):3135-41. PubMed ID: 22763751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Bayesian Approach for Coincidence Resolution in Microfluidic Impedance Cytometry.
    Caselli F; De Ninno A; Reale R; Businaro L; Bisegna P
    IEEE Trans Biomed Eng; 2021 Jan; 68(1):340-349. PubMed ID: 32746004
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications.
    Kim YW; Yoo JY
    Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoresis switching with vertical sidewall electrodes for microfluidic flow cytometry.
    Wang L; Flanagan LA; Monuki E; Jeon NL; Lee AP
    Lab Chip; 2007 Sep; 7(9):1114-20. PubMed ID: 17713608
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimizing Microfluidic Impedance Cytometry by Bypass Electrode Layout Design.
    Wu G; Zhang Z; Du M; Wu D; Zhou J; Hao T; Xie X
    Biosensors (Basel); 2024 Apr; 14(4):. PubMed ID: 38667197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a novel impedance cytometer design and its integration with lateral focusing by dielectrophoresis.
    Mernier G; Duqi E; Renaud P
    Lab Chip; 2012 Nov; 12(21):4344-9. PubMed ID: 22899298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positional dependence of particles in microfludic impedance cytometry.
    Spencer D; Morgan H
    Lab Chip; 2011 Apr; 11(7):1234-9. PubMed ID: 21359365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.