These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 31517407)
1. Anomalous Defect Dependence of Thermal Conductivity in Epitaxial WO Ning S; Huberman SC; Ding Z; Nahm HH; Kim YH; Kim HS; Chen G; Ross CA Adv Mater; 2019 Oct; 31(43):e1903738. PubMed ID: 31517407 [TBL] [Abstract][Full Text] [Related]
2. Boosting Thermoelectric Performance in Epitaxial GeTe Film/Si by Domain Engineering and Point Defect Control. Ishibe T; Komatsubara Y; Ishikawa K; Takigawa S; Naruse N; Mera Y; Yamashita Y; Ohishi Y; Nakamura Y ACS Appl Mater Interfaces; 2023 May; 15(21):26104-26110. PubMed ID: 37191696 [TBL] [Abstract][Full Text] [Related]
3. Effect of growth modes on electrical and thermal transport of thermoelectric ZnO:Al films. Liu S; Li G; Lan M; Piao Y; Miyazaki K; Wang Q Acta Crystallogr B Struct Sci Cryst Eng Mater; 2020 Apr; 76(Pt 2):259-266. PubMed ID: 32831228 [TBL] [Abstract][Full Text] [Related]
4. Reduced temperature-dependent thermal conductivity of magnetite thin films by controlling film thickness. Park NW; Lee WY; Kim JA; Song K; Lim H; Kim WD; Yoon SG; Lee SK Nanoscale Res Lett; 2014 Feb; 9(1):96. PubMed ID: 24571956 [TBL] [Abstract][Full Text] [Related]
5. Evolution of Insulator-Metal Phase Transitions in Epitaxial Tungsten Oxide Films during Electrolyte-Gating. Nishihaya S; Uchida M; Kozuka Y; Iwasa Y; Kawasaki M; Nishihaya S; Uchida M; Kozuka Y; Iwasa Y; Kawasaki M; Iwasa Y; Kawasaki M ACS Appl Mater Interfaces; 2016 Aug; 8(34):22330-6. PubMed ID: 27502546 [TBL] [Abstract][Full Text] [Related]
7. Temperature dependent thermal conductivity and transition mechanism in amorphous and crystalline Sb Li Q; Wei J; Sun H; Zhang K; Huang Z; Zhang L Sci Rep; 2017 Oct; 7(1):13747. PubMed ID: 29062082 [TBL] [Abstract][Full Text] [Related]
8. Creation and Ordering of Oxygen Vacancies at WO Zhang KHL; Li G; Spurgeon SR; Wang L; Yan P; Wang Z; Gu M; Varga T; Bowden ME; Zhu Z; Wang C; Du Y ACS Appl Mater Interfaces; 2018 May; 10(20):17480-17486. PubMed ID: 29694010 [TBL] [Abstract][Full Text] [Related]
9. Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures. Fu B; Tang G; Li Y Phys Chem Chem Phys; 2017 Nov; 19(42):28517-28526. PubMed ID: 28902205 [TBL] [Abstract][Full Text] [Related]
10. Antisite Pairs Suppress the Thermal Conductivity of BAs. Zheng Q; Polanco CA; Du MH; Lindsay LR; Chi M; Yan J; Sales BC Phys Rev Lett; 2018 Sep; 121(10):105901. PubMed ID: 30240242 [TBL] [Abstract][Full Text] [Related]
11. Ultralow lattice thermal conductivity induced high thermoelectric performance in the δ-Cu Yu J; Li T; Nie G; Zhang BP; Sun Q Nanoscale; 2019 May; 11(21):10306-10313. PubMed ID: 31099817 [TBL] [Abstract][Full Text] [Related]
12. Remarkably Improved Dispersion Stability and Thermal Conductivity of WO₃-H₂O Suspension by SiO₂ Coating. Pal B; Mallick SS; Pal B J Nanosci Nanotechnol; 2018 May; 18(5):3283-3290. PubMed ID: 29442829 [TBL] [Abstract][Full Text] [Related]
13. Optimized oxygen deprived low temperature sputtered WO Farid S; Hsu B; Stan L; Stroscio M; Dutta M Nanotechnology; 2020 Feb; 31(9):095706. PubMed ID: 31711046 [TBL] [Abstract][Full Text] [Related]
14. Bulk-like Intrinsic Phonon Thermal Conductivity of Micrometer-Thick AlN Films. Koh YR; Cheng Z; Mamun A; Bin Hoque MS; Liu Z; Bai T; Hussain K; Liao ME; Li R; Gaskins JT; Giri A; Tomko J; Braun JL; Gaevski M; Lee E; Yates L; Goorsky MS; Luo T; Khan A; Graham S; Hopkins PE ACS Appl Mater Interfaces; 2020 Jul; 12(26):29443-29450. PubMed ID: 32491824 [TBL] [Abstract][Full Text] [Related]
15. Enhanced thermoelectric performance of In2O3-based ceramics via Nanostructuring and Point Defect Engineering. Lan JL; Liu Y; Lin YH; Nan CW; Cai Q; Yang X Sci Rep; 2015 Jan; 5():7783. PubMed ID: 25586762 [TBL] [Abstract][Full Text] [Related]
16. Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO Woo S; Lee SA; Mun H; Choi YG; Zhung CJ; Shin S; Lacotte M; David A; Prellier W; Park T; Kang WN; Lee JS; Kim SW; Choi WS Nanoscale; 2018 Mar; 10(9):4377-4384. PubMed ID: 29450417 [TBL] [Abstract][Full Text] [Related]
17. High temperature thermoelectric properties of strontium titanate thin films with oxygen vacancy and niobium doping. Kumar SR; Barasheed AZ; Alshareef HN ACS Appl Mater Interfaces; 2013 Aug; 5(15):7268-73. PubMed ID: 23844758 [TBL] [Abstract][Full Text] [Related]
18. On the thermoelectric properties of Nb-doped SrTiO Chatterjee A; Lan Z; Christensen DV; Bauitti F; Morata A; Chavez-Angel E; Sanna S; Castelli IE; Chen Y; Tarancon A; Pryds N Phys Chem Chem Phys; 2022 Feb; 24(6):3741-3748. PubMed ID: 35080541 [TBL] [Abstract][Full Text] [Related]
19. Strain effects on phonon transport in antimonene investigated using a first-principles study. Zhang AX; Liu JT; Guo SD; Li HC Phys Chem Chem Phys; 2017 Jun; 19(22):14520-14526. PubMed ID: 28537286 [TBL] [Abstract][Full Text] [Related]
20. Origin of Intrinsically Low Thermal Conductivity in Talnakhite Cu Xie H; Su X; Zhang X; Hao S; Bailey TP; Stoumpos CC; Douvalis AP; Hu X; Wolverton C; Dravid VP; Uher C; Tang X; Kanatzidis MG J Am Chem Soc; 2019 Jul; 141(27):10905-10914. PubMed ID: 31203611 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]