These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 31517476)

  • 1. Quantitative Predictions for Molecular Initiating Events Using Three-Dimensional Quantitative Structure-Activity Relationships.
    Allen TEH; Goodman JM; Gutsell S; Russell PJ
    Chem Res Toxicol; 2020 Feb; 33(2):324-332. PubMed ID: 31517476
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Defining molecular initiating events in the adverse outcome pathway framework for risk assessment.
    Allen TE; Goodman JM; Gutsell S; Russell PJ
    Chem Res Toxicol; 2014 Dec; 27(12):2100-12. PubMed ID: 25354311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using 2D Structural Alerts to Define Chemical Categories for Molecular Initiating Events.
    Allen TEH; Goodman JM; Gutsell S; Russell PJ
    Toxicol Sci; 2018 Sep; 165(1):213-223. PubMed ID: 30020496
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A History of the Molecular Initiating Event.
    Allen TE; Goodman JM; Gutsell S; Russell PJ
    Chem Res Toxicol; 2016 Dec; 29(12):2060-2070. PubMed ID: 27989138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of the use of in silico methods to predict the chemistry of molecular initiating events related to drug toxicity.
    Ellison CM; Enoch SJ; Cronin MT
    Expert Opin Drug Metab Toxicol; 2011 Dec; 7(12):1481-95. PubMed ID: 22032332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Mechanistic Framework for Integrating Chemical Structure and High-Throughput Screening Results to Improve Toxicity Predictions.
    Nelms MD; Mellor CL; Enoch SJ; Judson RS; Patlewicz G; Richard AM; Madden JM; Cronin MTD; Edwards SW
    Comput Toxicol; 2018 Nov; 8():1-12. PubMed ID: 36779220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of molecular initiating events (MIE) using chemical database analysis and nuclear receptor activity assays for screening potential inhalation toxicants.
    Jeong J; Kim J; Choi J
    Regul Toxicol Pharmacol; 2023 Jun; 141():105391. PubMed ID: 37068727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Alerts and Random Forest Models in a Consensus Approach for Receptor Binding Molecular Initiating Events.
    Wedlake AJ; Folia M; Piechota S; Allen TEH; Goodman JM; Gutsell S; Russell PJ
    Chem Res Toxicol; 2020 Feb; 33(2):388-401. PubMed ID: 31850746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular target sequence similarity as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action.
    Lalone CA; Villeneuve DL; Burgoon LD; Russom CL; Helgen HW; Berninger JP; Tietge JE; Severson MN; Cavallin JE; Ankley GT
    Aquat Toxicol; 2013 Nov; 144-145():141-54. PubMed ID: 24177217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of the Neurotoxic Potential of Chemicals Based on Modelling of Molecular Initiating Events Upstream of the Adverse Outcome Pathways of (Developmental) Neurotoxicity.
    Gadaleta D; Spînu N; Roncaglioni A; Cronin MTD; Benfenati E
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Silico Study of In Vitro GPCR Assays by QSAR Modeling.
    Mansouri K; Judson RS
    Methods Mol Biol; 2016; 1425():361-81. PubMed ID: 27311474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Toxicity Prediction Tool for Potential Agonist/Antagonist Activities in Molecular Initiating Events Based on Chemical Structures.
    Kurosaki K; Wu R; Uesawa Y
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33113912
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network.
    Spînu N; Cronin MTD; Lao J; Bal-Price A; Campia I; Enoch SJ; Madden JC; Mora Lagares L; Novič M; Pamies D; Scholz S; Villeneuve DL; Worth AP
    Comput Toxicol; 2022 Feb; 21():100206. PubMed ID: 35211661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic understanding of molecular initiating events (MIEs) using NMR spectroscopy.
    Sanderson PN; Simpson W; Cubberley R; Aleksic M; Gutsell S; Russell PJ
    Toxicol Res (Camb); 2016 Jan; 5(1):34-44. PubMed ID: 30090324
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The integration of data on physico-chemical properties, in vitro-derived toxicity data and physiologically based kinetic and dynamic as modelling a tool in hazard and risk assessment. A commentary.
    Blaauboer BJ
    Toxicol Lett; 2003 Feb; 138(1-2):161-71. PubMed ID: 12559700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel QSAR Models for Molecular Initiating Event Modeling in Two Intersecting Adverse Outcome Pathways Based Pulmonary Fibrosis Prediction for Biocidal Mixtures.
    Seo M; Chae CH; Lee Y; Kim HR; Kim J
    Toxics; 2021 Mar; 9(3):. PubMed ID: 33809804
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Molecular Pathway and AOP Development Using Gene Network Analysis].
    Tanabe S; Hirose A; Whelan M; Yamada T
    Yakugaku Zasshi; 2020; 140(4):485-489. PubMed ID: 32238629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (Q)SARs: gatekeepers against risk on chemicals?
    Hulzebos EM; Posthumus R
    SAR QSAR Environ Res; 2003 Aug; 14(4):285-316. PubMed ID: 14506871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adverse outcome pathway-driven identification of rat liver tumorigens in short-term assays.
    Rooney J; Hill T; Qin C; Sistare FD; Corton JC
    Toxicol Appl Pharmacol; 2018 Oct; 356():99-113. PubMed ID: 30048669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [AI-based QSAR Modeling for Prediction of Active Compounds in MIE/AOP].
    Uesawa Y
    Yakugaku Zasshi; 2020; 140(4):499-505. PubMed ID: 32238631
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.