These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31517947)

  • 1. Neural networks for image-based wavefront sensing for astronomy.
    Andersen T; Owner-Petersen M; Enmark A
    Opt Lett; 2019 Sep; 44(18):4618-4621. PubMed ID: 31517947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bringing the visible universe into focus with Robo-AO.
    Baranec C; Riddle R; Law NM; Ramaprakash AN; Tendulkar SP; Bui K; Burse MP; Chordia P; Das HK; Davis JT; Dekany RG; Kasliwal MM; Kulkarni SR; Morton TD; Ofek EO; Punnadi S
    J Vis Exp; 2013 Feb; (72):. PubMed ID: 23426078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sky coverage estimates for adaptive optics systems from computations in Zernike space.
    Clare RM; Ellerbroek BL
    J Opt Soc Am A Opt Image Sci Vis; 2006 Feb; 23(2):418-26. PubMed ID: 16477845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laboratory MCAO Test-Bed for Developing Wavefront Sensing Concepts.
    Goncharov AV; Dainty JC; Esposito S; Puglisi A
    Opt Express; 2005 Jul; 13(14):5580-90. PubMed ID: 19498555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved Machine Learning Approach for Wavefront Sensing.
    Guo H; Xu Y; Li Q; Du S; He D; Wang Q; Huang Y
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31412562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep residual learning for low-order wavefront sensing in high-contrast imaging systems.
    Allan G; Kang I; Douglas ES; Barbastathis G; Cahoy K
    Opt Express; 2020 Aug; 28(18):26267-26283. PubMed ID: 32906902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning wavefront sensing.
    Nishizaki Y; Valdivia M; Horisaki R; Kitaguchi K; Saito M; Tanida J; Vera E
    Opt Express; 2019 Jan; 27(1):240-251. PubMed ID: 30645371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning for improved image-based wavefront sensing.
    Paine SW; Fienup JR
    Opt Lett; 2018 Mar; 43(6):1235-1238. PubMed ID: 29543260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential focal anisoplanatism in laser guide star wavefront sensing on extremely large telescopes.
    Muller N; Michau V; Robert C; Rousset G
    Opt Lett; 2011 Oct; 36(20):4071-3. PubMed ID: 22002389
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear wavefront reconstruction with convolutional neural networks for Fourier-based wavefront sensors.
    Landman R; Haffert SY
    Opt Express; 2020 May; 28(11):16644-16657. PubMed ID: 32549483
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mean-square residual error of a wavefront after propagation through atmospheric turbulence and after correction with Zernike polynomials.
    Conan R
    J Opt Soc Am A Opt Image Sci Vis; 2008 Feb; 25(2):526-36. PubMed ID: 18246186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformal convolutional neural network (CCNN) for single-shot sensorless wavefront sensing.
    Zhang Y; Zhou T; Fang L; Kong L; Xie H; Dai Q
    Opt Express; 2020 Jun; 28(13):19218-19228. PubMed ID: 32672203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Zernike polynomial fitting fails to represent all visually significant corneal aberrations.
    Smolek MK; Klyce SD
    Invest Ophthalmol Vis Sci; 2003 Nov; 44(11):4676-81. PubMed ID: 14578385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. On-sky performance of the Zernike phase contrast sensor for the phasing of segmented telescopes.
    Surdej I; Yaitskova N; Gonte F
    Appl Opt; 2010 Jul; 49(21):4052-62. PubMed ID: 20648188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Off-axis point spread function reconstruction for single conjugate adaptive optics.
    Wagner R; Niebsch J; Ramlau R
    J Opt Soc Am A Opt Image Sci Vis; 2023 Jul; 40(7):1382-1391. PubMed ID: 37706739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Improved Method of Measuring Wavefront Aberration Based on Image with Machine Learning in Free Space Optical Communication.
    Xu Y; He D; Wang Q; Guo H; Li Q; Xie Z; Huang Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convolutional Neural Networks Approach for Solar Reconstruction in SCAO Configurations.
    Suárez Gómez SL; González-Gutiérrez C; García Riesgo F; Sánchez Rodríguez ML; Javier Iglesias Rodríguez F; Santos JD
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31091820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of wavefront sampling speed on the performance of adaptive astronomical telescopes.
    Kane TJ; Gardner CS; Thompson LA
    Appl Opt; 1991 Jan; 30(2):214-21. PubMed ID: 20581972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-exposure filtering of turbulence-degraded wavefronts.
    Gordon JA; Buscher DF; Baron F
    Appl Opt; 2011 Sep; 50(27):5303-9. PubMed ID: 21947050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neural-network-based wavefront solution algorithm for a wide field survey telescope.
    Tan X; Lou Z; Zuo Y; Zhang X
    Appl Opt; 2023 Jun; 62(18):4987-5002. PubMed ID: 37707277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.