These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Collaborative Profile-QSAR: A Natural Platform for Building Collaborative Models among Competing Companies. Martin EJ; Zhu XW J Chem Inf Model; 2021 Apr; 61(4):1603-1616. PubMed ID: 33844519 [TBL] [Abstract][Full Text] [Related]
4. Profile-QSAR: a novel meta-QSAR method that combines activities across the kinase family to accurately predict affinity, selectivity, and cellular activity. Martin E; Mukherjee P; Sullivan D; Jansen J J Chem Inf Model; 2011 Aug; 51(8):1942-56. PubMed ID: 21667971 [TBL] [Abstract][Full Text] [Related]
5. Kinase-kernel models: accurate in silico screening of 4 million compounds across the entire human kinome. Martin E; Mukherjee P J Chem Inf Model; 2012 Jan; 52(1):156-70. PubMed ID: 22133092 [TBL] [Abstract][Full Text] [Related]
6. General Approach to Estimate Error Bars for Quantitative Structure-Activity Relationship Predictions of Molecular Activity. Liu R; Glover KP; Feasel MG; Wallqvist A J Chem Inf Model; 2018 Aug; 58(8):1561-1575. PubMed ID: 29949366 [TBL] [Abstract][Full Text] [Related]
7. ADMET Evaluation in Drug Discovery. Part 17: Development of Quantitative and Qualitative Prediction Models for Chemical-Induced Respiratory Toxicity. Lei T; Chen F; Liu H; Sun H; Kang Y; Li D; Li Y; Hou T Mol Pharm; 2017 Jul; 14(7):2407-2421. PubMed ID: 28595388 [TBL] [Abstract][Full Text] [Related]
9. Development of Predictive QSAR Models of 4-Thiazolidinones Antitrypanosomal Activity Using Modern Machine Learning Algorithms. Kryshchyshyn A; Devinyak O; Kaminskyy D; Grellier P; Lesyk R Mol Inform; 2018 May; 37(5):e1700078. PubMed ID: 29134756 [TBL] [Abstract][Full Text] [Related]
10. Prediction of p Lu Y; Anand S; Shirley W; Gedeck P; Kelley BP; Skolnik S; Rodde S; Nguyen M; Lindvall M; Jia W J Chem Inf Model; 2019 Nov; 59(11):4706-4719. PubMed ID: 31647238 [TBL] [Abstract][Full Text] [Related]
11. Using information from historical high-throughput screens to predict active compounds. Riniker S; Wang Y; Jenkins JL; Landrum GA J Chem Inf Model; 2014 Jul; 54(7):1880-91. PubMed ID: 24933016 [TBL] [Abstract][Full Text] [Related]
12. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches. Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046 [TBL] [Abstract][Full Text] [Related]
13. Building Quantitative Structure-Activity Relationship Models Using Bayesian Additive Regression Trees. Feng D; Svetnik V; Liaw A; Pratola M; Sheridan RP J Chem Inf Model; 2019 Jun; 59(6):2642-2655. PubMed ID: 30998343 [TBL] [Abstract][Full Text] [Related]
14. Comparison of Cellular Morphological Descriptors and Molecular Fingerprints for the Prediction of Cytotoxicity- and Proliferation-Related Assays. Seal S; Yang H; Vollmers L; Bender A Chem Res Toxicol; 2021 Feb; 34(2):422-437. PubMed ID: 33522793 [TBL] [Abstract][Full Text] [Related]
15. Discovering Highly Potent Molecules from an Initial Set of Inactives Using Iterative Screening. Cortés-Ciriano I; Firth NC; Bender A; Watson O J Chem Inf Model; 2018 Sep; 58(9):2000-2014. PubMed ID: 30130102 [TBL] [Abstract][Full Text] [Related]
16. Comparing the Influence of Simulated Experimental Errors on 12 Machine Learning Algorithms in Bioactivity Modeling Using 12 Diverse Data Sets. Cortes-Ciriano I; Bender A; Malliavin TE J Chem Inf Model; 2015 Jul; 55(7):1413-25. PubMed ID: 26038978 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the Predictive Performance and Interpretability of Random Forest and Linear Models on Benchmark Data Sets. Marchese Robinson RL; Palczewska A; Palczewski J; Kidley N J Chem Inf Model; 2017 Aug; 57(8):1773-1792. PubMed ID: 28715209 [TBL] [Abstract][Full Text] [Related]
18. Binary classification of a large collection of environmental chemicals from estrogen receptor assays by quantitative structure-activity relationship and machine learning methods. Zang Q; Rotroff DM; Judson RS J Chem Inf Model; 2013 Dec; 53(12):3244-61. PubMed ID: 24279462 [TBL] [Abstract][Full Text] [Related]
19. Systematic Modeling, Prediction, and Comparison of Domain-Peptide Affinities: Does it Work Effectively With the Peptide QSAR Methodology? Liu Q; Lin J; Wen L; Wang S; Zhou P; Mei L; Shang S Front Genet; 2021; 12():800857. PubMed ID: 35096016 [TBL] [Abstract][Full Text] [Related]
20. Use of in vitro HTS-derived concentration-response data as biological descriptors improves the accuracy of QSAR models of in vivo toxicity. Sedykh A; Zhu H; Tang H; Zhang L; Richard A; Rusyn I; Tropsha A Environ Health Perspect; 2011 Mar; 119(3):364-70. PubMed ID: 20980217 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]