These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 31518135)
1. Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon. Yang M; Mattei MS; Cherqui CR; Chen X; Van Duyne RP; Schatz GC Nano Lett; 2019 Oct; 19(10):7309-7316. PubMed ID: 31518135 [TBL] [Abstract][Full Text] [Related]
2. Single-Molecule Imaging Using Atomistic Near-Field Tip-Enhanced Raman Spectroscopy. Liu P; Chulhai DV; Jensen L ACS Nano; 2017 May; 11(5):5094-5102. PubMed ID: 28463555 [TBL] [Abstract][Full Text] [Related]
3. Surface- and Tip-Enhanced Raman Scattering by CdSe Nanocrystals on Plasmonic Substrates. Milekhin IA; Milekhin AG; Zahn DRT Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35808032 [TBL] [Abstract][Full Text] [Related]
4. Tunable plasmon resonances in a metallic nanotip-film system. Uetsuki K; Verma P; Nordlander P; Kawata S Nanoscale; 2012 Sep; 4(19):5931-5. PubMed ID: 22899297 [TBL] [Abstract][Full Text] [Related]
5. Understanding the Role of Different Substrate Geometries for Achieving Optimum Tip-Enhanced Raman Scattering Sensitivity. He L; Rahaman M; Madeira TI; Zahn DRT Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33540743 [TBL] [Abstract][Full Text] [Related]
6. Circular nanocavity substrate-assisted plasmonic tip for its enhancement in nanofocusing and optical trapping. Lu F; Zhang W; Sun L; Mei T; Yuan X Opt Express; 2021 Nov; 29(23):37515-37524. PubMed ID: 34808821 [TBL] [Abstract][Full Text] [Related]
7. Near field plasmonic gradient effects on high vacuum tip-enhanced Raman spectroscopy. Fang Y; Zhang Z; Chen L; Sun M Phys Chem Chem Phys; 2015 Jan; 17(2):783-94. PubMed ID: 25424492 [TBL] [Abstract][Full Text] [Related]
8. Effect of the focused gap-plasmon mode on tip-enhanced Raman excitation and scattering. Zhang C; Min C; Li L; Zhang Y; Wei S; Wang X; Yuan X Opt Express; 2023 Jan; 31(3):4216-4228. PubMed ID: 36785395 [TBL] [Abstract][Full Text] [Related]
9. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K; Choi JY; Lee HB; Shin KS J Chem Phys; 2011 Sep; 135(12):124705. PubMed ID: 21974550 [TBL] [Abstract][Full Text] [Related]
10. [Detection of single-walled carbon nanotube bundles by tip-enhanced Raman spectroscopy]. Wu XB; Wang J; Wang R; Xu JY; Tian Q; Yu JY Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2681-5. PubMed ID: 20038037 [TBL] [Abstract][Full Text] [Related]
11. Gap plasmon modes and plasmon-exciton coupling in a hybrid Au/MoSe Alves E; Péchou R; Coratger R; Mlayah A Opt Express; 2023 Apr; 31(8):12549-12561. PubMed ID: 37157412 [TBL] [Abstract][Full Text] [Related]
16. Quantitative Plasmon Mode and Surface-Enhanced Raman Scattering Analyses of Strongly Coupled Plasmonic Nanotrimers with Diverse Geometries. Lee H; Kim GH; Lee JH; Kim NH; Nam JM; Suh YD Nano Lett; 2015 Jul; 15(7):4628-36. PubMed ID: 26075353 [TBL] [Abstract][Full Text] [Related]
17. Tip enhanced Raman scattering with adiabatic plasmon focusing tips. Bek A; De Angelis F; Das G; Di Fabrizio E; Lazzarino M Micron; 2011 Jun; 42(4):313-7. PubMed ID: 20952200 [TBL] [Abstract][Full Text] [Related]
18. Single-molecule and single-particle-based correlation studies between localized surface plasmons of dimeric nanostructures with ~1 nm gap and surface-enhanced Raman scattering. Lee H; Lee JH; Jin SM; Suh YD; Nam JM Nano Lett; 2013; 13(12):6113-21. PubMed ID: 24256433 [TBL] [Abstract][Full Text] [Related]
19. The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering. Rahaman M; Milekhin AG; Mukherjee A; Rodyakina EE; Latyshev AV; Dzhagan VM; Zahn DRT Faraday Discuss; 2019 May; 214():309-323. PubMed ID: 30839033 [TBL] [Abstract][Full Text] [Related]
20. Spectral and mode properties of surface plasmon polariton waveguides studied by near-field excitation and leakage-mode radiation measurement. Pan MY; Lin EH; Wang L; Wei PK Nanoscale Res Lett; 2014; 9(1):430. PubMed ID: 25177228 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]