These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31518226)

  • 1. In silico and in vitro Study of the Inhibitory Effect of Antiinflammatory Drug Betamethasone on Two Lipases.
    Samira N; Khedidja B; Zahra AF; Elyakine CKN; Mohamed Y
    Antiinflamm Antiallergy Agents Med Chem; 2020; 19(4):387-392. PubMed ID: 31518226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Inhibitory Effect of Some Drugs on
    Serseg T; Benarous K
    Endocr Metab Immune Disord Drug Targets; 2018; 18(6):602-609. PubMed ID: 29557755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antiallergy Drugs as Potent Inhibitors of Lipase with Structure-activity Relationships and Molecular Docking.
    Khedidja B; Madjda B; Abderrahmane G
    Antiinflamm Antiallergy Agents Med Chem; 2018; 17(2):95-101. PubMed ID: 30198443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seeds, Leaves and Roots of
    Nebeg H; Benarous K; Serseg T; Lazreg A; Hassani H; Yousfi M
    Endocr Metab Immune Disord Drug Targets; 2019; 19(5):683-696. PubMed ID: 30706829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harmaline and hispidin from Peganum harmala and Inonotus hispidus with binding affinity to Candida rugosa lipase: In silico and in vitro studies.
    Benarous K; Bombarda I; Iriepa I; Moraleda I; Gaetan H; Linani A; Tahri D; Sebaa M; Yousfi M
    Bioorg Chem; 2015 Oct; 62():1-7. PubMed ID: 26151548
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lepidine B & E as New Target Inhibitors from Lepidium Sativum Seeds Against Four Enzymes of the Pathogen Candida albicans: In Vitro and In Silico Studies.
    Gacemi S; Benarous K; Imperial S; Yousfi M
    Endocr Metab Immune Disord Drug Targets; 2020; 20(1):127-138. PubMed ID: 30987578
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of Rhizomucor miehei and Candida rugosa lipases by D-glucose in esterification between L-alanine and D-glucose.
    Somashekar BR; Lohith K; Manohar B; Divakar S
    J Biosci Bioeng; 2007 Feb; 103(2):122-8. PubMed ID: 17368393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of lipase on carboxylic acid-modified silica nanoparticles for olive oil glycerolysis.
    Singh AK; Mukhopadhyay M
    Bioprocess Biosyst Eng; 2018 Jan; 41(1):115-127. PubMed ID: 29043450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods.
    Zhang R; Zhao L; Liu R
    J Photochem Photobiol B; 2016 Oct; 163():40-6. PubMed ID: 27529468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation and properties of lipases immobilized on different supports.
    Sağiroğlu A; Kilinç A; Telefoncu A
    Artif Cells Blood Substit Immobil Biotechnol; 2004; 32(4):625-36. PubMed ID: 15974188
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Semiautomated Structure-Based Method To Predict Substrates of Enzymes via Molecular Docking: A Case Study with Candida antarctica Lipase B.
    Yao Z; Zhang L; Gao B; Cui D; Wang F; He X; Zhang JZ; Wei D
    J Chem Inf Model; 2016 Oct; 56(10):1979-1994. PubMed ID: 27529495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylsalicylic acid (aspirin) reduces damage to reconstituted human tissues infected with Candida species by inhibiting extracellular fungal lipases.
    Trofa D; Agovino M; Stehr F; Schäfer W; Rykunov D; Fiser A; Hamari Z; Nosanchuk JD; Gácser A
    Microbes Infect; 2009 Dec; 11(14-15):1131-9. PubMed ID: 19703582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring Aurone Derivatives as Potential Human Pancreatic Lipase Inhibitors through Molecular Docking and Molecular Dynamics Simulations.
    Nguyen PTV; Huynh HA; Truong DV; Tran TD; Vo CT
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33066044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Inhibition of lipase activity by low-molecular-weight chitosan].
    Ostanina ES; Varlamov VP; Iakovlev GI
    Prikl Biokhim Mikrobiol; 2008; 44(1):38-43. PubMed ID: 18491595
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism of deactivation of C. antarctica lipase B by methanol.
    Kulschewski T; Sasso F; Secundo F; Lotti M; Pleiss J
    J Biotechnol; 2013 Dec; 168(4):462-9. PubMed ID: 24144811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic resolution to (-)-ormeloxifene intermediates from their racemates using immobilized Candida rugosa lipase.
    Lehmann SV; Breinholt J; Bury PS; Nielsen TE
    Chirality; 2000 Jul; 12(7):568-73. PubMed ID: 10861957
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial Activation of Candida antarctica Lipase B: Combined Evidence from Experiment and Simulation.
    Zisis T; Freddolino PL; Turunen P; van Teeseling MC; Rowan AE; Blank KG
    Biochemistry; 2015 Sep; 54(38):5969-79. PubMed ID: 26346632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoamylacetate production by entrapped and covalently bound Candida rugosa and porcine pancreatic lipases.
    Ozyilmaz G; Yağız E
    Food Chem; 2012 Dec; 135(4):2326-32. PubMed ID: 22980809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization of Candida rugosa lipase on superparamagnetic Fe3O4 nanoparticles for biocatalysis in low-water media.
    Mukherjee J; Solanki K; Gupta MN
    Methods Mol Biol; 2013; 1051():117-27. PubMed ID: 23934801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. C-terminal region of Candida rugosa lipases affects enzyme activity and interfacial activation.
    Hung KS; Chen SY; Liu HF; Tsai BR; Chen HW; Huang CY; Liao JL; Sun KH; Tang SJ
    J Agric Food Chem; 2011 May; 59(10):5396-401. PubMed ID: 21504227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.