These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31518497)

  • 1. CF-Targeter: A Rational Biological Cell Factory Targeting Platform for Biosynthetic Target Chemicals.
    Ding S; Cai P; Yuan L; Tian Y; Tu W; Zhang D; Cheng X; Sun D; Chen J; Hu QN
    ACS Synth Biol; 2019 Oct; 8(10):2280-2286. PubMed ID: 31518497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EcoSynther: A Customized Platform To Explore the Biosynthetic Potential in E. coli.
    Ding S; Liao X; Tu W; Wu L; Tian Y; Sun Q; Chen J; Hu QN
    ACS Chem Biol; 2017 Nov; 12(11):2823-2829. PubMed ID: 28952720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enumerating metabolic pathways for the production of heterologous target chemicals in chassis organisms.
    Carbonell P; Fichera D; Pandit SB; Faulon JL
    BMC Syst Biol; 2012 Feb; 6():10. PubMed ID: 22309974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. novoPathFinder: a webserver of designing novel-pathway with integrating GEM-model.
    Ding S; Tian Y; Cai P; Zhang D; Cheng X; Sun D; Yuan L; Chen J; Tu W; Wei DQ; Hu QN
    Nucleic Acids Res; 2020 Jul; 48(W1):W477-W487. PubMed ID: 32313937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RetSynth: determining all optimal and sub-optimal synthetic pathways that facilitate synthesis of target compounds in chassis organisms.
    Whitmore LS; Nguyen B; Pinar A; George A; Hudson CM
    BMC Bioinformatics; 2019 Sep; 20(1):461. PubMed ID: 31500573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PrecursorFinder: a customized biosynthetic precursor explorer.
    Yuan L; Tian Y; Ding S; Liu Y; Chen F; Zhang T; Tu W; Chen J; Hu QN
    Bioinformatics; 2019 May; 35(9):1603-1604. PubMed ID: 30304379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retrosynthetic design of heterologous pathways.
    Carbonell P; Planson AG; Faulon JL
    Methods Mol Biol; 2013; 985():149-73. PubMed ID: 23417804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MESSI: metabolic engineering target selection and best strain identification tool.
    Kang K; Li J; Lim BL; Panagiotou G
    Database (Oxford); 2015; 2015():. PubMed ID: 26255308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Applications of genome-scale metabolic network model in metabolic engineering.
    Kim B; Kim WJ; Kim DI; Lee SY
    J Ind Microbiol Biotechnol; 2015 Mar; 42(3):339-48. PubMed ID: 25465049
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A retrosynthetic biology approach to metabolic pathway design for therapeutic production.
    Carbonell P; Planson AG; Fichera D; Faulon JL
    BMC Syst Biol; 2011 Aug; 5():122. PubMed ID: 21819595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. De novo design of biosynthetic pathways for bacterial production of bulk chemicals and biofuels.
    Okano K; Honda K; Taniguchi H; Kondo A
    FEMS Microbiol Lett; 2018 Oct; 365(20):. PubMed ID: 30169822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chassis engineering for microbial production of chemicals: from natural microbes to synthetic organisms.
    Liu J; Wu X; Yao M; Xiao W; Zha J
    Curr Opin Biotechnol; 2020 Dec; 66():105-112. PubMed ID: 32738762
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ArtPathDesign: rational heterologous pathway design system for the production of nonnative metabolites.
    Chatsurachai S; Furusawa C; Shimizu H
    J Biosci Bioeng; 2013 Oct; 116(4):524-7. PubMed ID: 23664926
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Data-driven rational biosynthesis design: from molecules to cell factories.
    Chen F; Yuan L; Ding S; Tian Y; Hu QN
    Brief Bioinform; 2020 Jul; 21(4):1238-1248. PubMed ID: 31243440
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering Brevibacterium flavum for the production of renewable bioenergy: C4-C5 advanced alcohols.
    Su H; Lin J; Wang Y; Chen Q; Wang G; Tan F
    Biotechnol Bioeng; 2017 Sep; 114(9):1946-1958. PubMed ID: 28464284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Graph-based and constraint-based heterologous metabolic pathway design methods and application].
    Yu W; Yuan Q; Ma H; Wang Z
    Sheng Wu Gong Cheng Xue Bao; 2022 Apr; 38(4):1390-1407. PubMed ID: 35470614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An in silico platform for the design of heterologous pathways in nonnative metabolite production.
    Chatsurachai S; Furusawa C; Shimizu H
    BMC Bioinformatics; 2012 May; 13():93. PubMed ID: 22578364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BioSynther: a customized biosynthetic potential explorer.
    Tu W; Zhang H; Liu J; Hu QN
    Bioinformatics; 2016 Feb; 32(3):472-3. PubMed ID: 26471457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial biosynthesis of small molecules in plants: Engineering strategies and tools.
    Gerasymenko I; Sheludko Y; Fräbel S; Staniek A; Warzecha H
    Methods Enzymol; 2019; 617():413-442. PubMed ID: 30784411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell Factory Engineering.
    Davy AM; Kildegaard HF; Andersen MR
    Cell Syst; 2017 Mar; 4(3):262-275. PubMed ID: 28334575
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.