BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31518620)

  • 81. Adsorptive removal of acidic dye onto grafted chitosan: A plausible grafting and adsorption mechanism.
    Tahira I; Aslam Z; Abbas A; Monim-Ul-Mehboob M; Ali S; Asghar A
    Int J Biol Macromol; 2019 Sep; 136():1209-1218. PubMed ID: 31252016
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Biosorbent for tungsten species removal from water: effects of co-occurring inorganic species.
    Gecol H; Ergican E; Miakatsindila P
    J Colloid Interface Sci; 2005 Dec; 292(2):344-53. PubMed ID: 15993417
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite.
    Zhang X; Wang X
    PLoS One; 2015; 10(2):e0117077. PubMed ID: 25647398
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Removal of o-nitrobenzoic acid by adsorption on to a new organoclay: montmorillonite modified with HDTMA microemulsion.
    Xin XD; Wang J; Yu HQ; Du B; Wei Q; Yan LG
    Environ Technol; 2011; 32(3-4):447-54. PubMed ID: 21780712
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Adsorption of Cr(VI) using Fe-crosslinked chitosan complex (Ch-Fe).
    Zimmermann AC; Mecabô A; Fagundes T; Rodrigues CA
    J Hazard Mater; 2010 Jul; 179(1-3):192-6. PubMed ID: 20307932
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Adsorption of cadmium onto Al(13)-pillared acid-activated montmorillonite.
    Yan LG; Shan XQ; Wen B; Owens G
    J Hazard Mater; 2008 Aug; 156(1-3):499-508. PubMed ID: 18243531
    [TBL] [Abstract][Full Text] [Related]  

  • 87. An investigation on biosorption of nitrate from water by chitosan based organic-inorganic hybrid biocomposites.
    Golie WM; Upadhyayula S
    Int J Biol Macromol; 2017 Apr; 97():489-502. PubMed ID: 28099890
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Adsorption of gold(III), platinum(IV) and palladium(II) onto glycine modified crosslinked chitosan resin.
    Ramesh A; Hasegawa H; Sugimoto W; Maki T; Ueda K
    Bioresour Technol; 2008 Jun; 99(9):3801-9. PubMed ID: 17698356
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Synthesis of novel modified magnetic chitosan particles and their adsorption performance toward Cr(VI).
    Zheng C; Zheng H; Wang Y; Wang Y; Qu W; An Q; Liu Y
    Bioresour Technol; 2018 Nov; 267():1-8. PubMed ID: 30005271
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Effective phosphorus removal using chitosan/Ca-organically modified montmorillonite beads in batch and fixed-bed column studies.
    Jang J; Lee DS
    J Hazard Mater; 2019 Aug; 375():9-18. PubMed ID: 31030076
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Enhanced removal of radioactive iodine anions from wastewater using modified bentonite: Experimental and theoretical study.
    Yang J; Tai W; Wu F; Shi K; Jia T; Su Y; Liu T; Mocilac P; Hou X; Chen X
    Chemosphere; 2022 Apr; 292():133401. PubMed ID: 34953880
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Adsorption of emulsified oil from metalworking fluid on activated bleaching earth-chitosan-SDS composites: Optimization, kinetics, isotherms.
    Naowanat N; Thouchprasitchai N; Pongstabodee S
    J Environ Manage; 2016 Mar; 169():103-15. PubMed ID: 26731309
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Enhancing the metal ion binding characteristics and reversal of selectivity of crosslinked chitosan sorbents through functionalisation for targeted applications.
    Nishad PA; Ajaykumar A; Bhaskarapillai A
    Int J Biol Macromol; 2023 Aug; 246():125720. PubMed ID: 37423451
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Safe disposal of radioactive iodide ions from solutions by Ag2O grafted sodium niobate nanofibers.
    Mu W; Li X; Liu G; Yu Q; Xie X; Wei H; Jian Y
    Dalton Trans; 2016 Jan; 45(2):753-9. PubMed ID: 26631449
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Efficacy of a Graphene Oxide/Chitosan Sponge for Removal of Radioactive Iodine-131 from Aqueous Solutions.
    Suksompong T; Thongmee S; Sudprasert W
    Life (Basel); 2021 Jul; 11(7):. PubMed ID: 34357093
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Synthesis and characterization of Ag@Cu-based MOFs as efficient adsorbents for iodine anions removal from aqueous solutions.
    Gong CH; Li ZY; Chen KW; Gu AT; Wang P; Yang Y
    J Environ Radioact; 2023 Sep; 265():107211. PubMed ID: 37331177
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Construction of hydrophobic interface on natural biomaterials for higher efficient and reversible radioactive iodine adsorption in water.
    Zheng B; Liu X; Hu J; Wang F; Hu X; Zhu Y; Lv X; Du J; Xiao D
    J Hazard Mater; 2019 Apr; 368():81-89. PubMed ID: 30665111
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Preparation of Carboxymethyl Cellulose-Based Macroporous Adsorbent by Eco-Friendly Pickering-MIPEs Template for Fast Removal of Pb
    Wang F; Zhu Y; Xu H; Wang A
    Front Chem; 2019; 7():603. PubMed ID: 31552221
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Reusable fibrous adsorbent prepared via Co-radiation induced graft polymerization for iodine adsorption.
    Ye F; Huang C; Jiang X; He W; Gao X; Ma L; Ao J; Xu L; Wang Z; Li Q; Li J; Ma H
    Ecotoxicol Environ Saf; 2020 Oct; 203():111021. PubMed ID: 32888607
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Removal of iodine by dry adsorbents in filtered containment venting system after 10 years of Fukushima accident.
    Ahad J; Ahmad M; Farooq A; Waheed K; Irfan N
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):74628-74670. PubMed ID: 37231136
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.