BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 31518655)

  • 1. High Fat Diet Attenuates Cholecystokinin-Induced cFos Activation of Prolactin-Releasing Peptide-Expressing A2 Noradrenergic Neurons in the Caudal Nucleus of the Solitary Tract.
    Wall KD; Olivos DR; Rinaman L
    Neuroscience; 2020 Nov; 447():113-121. PubMed ID: 31518655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ghrelin signaling contributes to fasting-induced attenuation of hindbrain neural activation and hypophagic responses to systemic cholecystokinin in rats.
    Maniscalco JW; Edwards CM; Rinaman L
    Am J Physiol Regul Integr Comp Physiol; 2020 May; 318(5):R1014-R1023. PubMed ID: 32292065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overnight food deprivation markedly attenuates hindbrain noradrenergic, glucagon-like peptide-1, and hypothalamic neural responses to exogenous cholecystokinin in male rats.
    Maniscalco JW; Rinaman L
    Physiol Behav; 2013 Sep; 121():35-42. PubMed ID: 23391574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential activation of chemically identified neurons in the caudal nucleus of the solitary tract in non-entrained rats after intake of satiating vs. non-satiating meals.
    Kreisler AD; Davis EA; Rinaman L
    Physiol Behav; 2014 Sep; 136():47-54. PubMed ID: 24508750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sex and metabolic state interact to influence expression of passive avoidance memory in rats: Potential contribution of A2 noradrenergic neurons.
    Edwards CM; Dolezel T; Rinaman L
    Physiol Behav; 2021 Oct; 239():113511. PubMed ID: 34181929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cholecystokinin system is involved in the anorexigenic effect of peripherally applied palmitoylated prolactin-releasing peptide in fasted mice.
    Pirník Z; Kořínková L; Osacká J; Železná B; Kuneš J; Maletínská L
    Physiol Res; 2021 Aug; 70(4):579-590. PubMed ID: 34062082
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of neurons in the hypothalamic dorsomedial nucleus via hypothalamic projections of the nucleus of the solitary tract following refeeding of fasted rats.
    Renner E; Szabó-Meltzer KI; Puskás N; Tóth ZE; Dobolyi A; Palkovits M
    Eur J Neurosci; 2010 Jan; 31(2):302-14. PubMed ID: 20074225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Participation of the prolactin-releasing peptide-containing neurones in caudal medulla in conveying haemorrhagic stress-induced signals to the paraventricular nucleus of the hypothalamus.
    Uchida K; Kobayashi D; Das G; Onaka T; Inoue K; Itoi K
    J Neuroendocrinol; 2010 Jan; 22(1):33-42. PubMed ID: 19912474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prolactin-releasing peptide is expressed in afferents to the endocrine hypothalamus, but not in neurosecretory neurones.
    Morales T; Hinuma S; Sawchenko PE
    J Neuroendocrinol; 2000 Feb; 12(2):131-40. PubMed ID: 10718908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amphetamine-induced activation of neurons within the rat nucleus of the solitary tract.
    Edwards CM; Strother J; Zheng H; Rinaman L
    Physiol Behav; 2019 May; 204():355-363. PubMed ID: 30831183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prolactin-releasing peptide-immunoreactivity in A1 and A2 noradrenergic neurons of the rat medulla.
    Chen C; Dun SL; Dun NJ; Chang JK
    Brain Res; 1999 Mar; 822(1-2):276-9. PubMed ID: 10082910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicotine stimulates prolactin-releasing peptide (PrRP) cells and non-PrRP cells in the solitary nucleus.
    Sun B; Nemoto H; Fujiwara K; Adachi S; Inoue K
    Regul Pept; 2005 Mar; 126(1-2):91-6. PubMed ID: 15620420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GLP-1 neurons form a local synaptic circuit within the rodent nucleus of the solitary tract.
    Card JP; Johnson AL; Llewellyn-Smith IJ; Zheng H; Anand R; Brierley DI; Trapp S; Rinaman L
    J Comp Neurol; 2018 Oct; 526(14):2149-2164. PubMed ID: 30019398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of prolactin-releasing peptide in the activation of oxytocin neurones in response to food intake.
    Yamashita M; Takayanagi Y; Yoshida M; Nishimori K; Kusama M; Onaka T
    J Neuroendocrinol; 2013 May; 25(5):455-65. PubMed ID: 23363338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endogenous prolactin-releasing peptide regulates food intake in rodents.
    Takayanagi Y; Matsumoto H; Nakata M; Mera T; Fukusumi S; Hinuma S; Ueta Y; Yada T; Leng G; Onaka T
    J Clin Invest; 2008 Dec; 118(12):4014-24. PubMed ID: 19033670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prolactin-releasing peptide as a novel stress mediator in the central nervous system.
    Maruyama M; Matsumoto H; Fujiwara K; Noguchi J; Kitada C; Fujino M; Inoue K
    Endocrinology; 2001 May; 142(5):2032-8. PubMed ID: 11316770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Brainstem prolactin-releasing peptide neurons are sensitive to stress and lactation.
    Morales T; Sawchenko PE
    Neuroscience; 2003; 121(3):771-8. PubMed ID: 14568035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prolactin-releasing Peptide mediates cholecystokinin-induced satiety in mice.
    Bechtold DA; Luckman SM
    Endocrinology; 2006 Oct; 147(10):4723-9. PubMed ID: 16794001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of nucleus of the solitary tract glucagon-like peptide-1 and prolactin-releasing peptide neurons in stress: anatomy, physiology and cellular interactions.
    Holt MK; Rinaman L
    Br J Pharmacol; 2022 Feb; 179(4):642-658. PubMed ID: 34050926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PRL-releasing peptide reduces food intake and may mediate satiety signaling.
    Lawrence CB; Ellacott KL; Luckman SM
    Endocrinology; 2002 Feb; 143(2):360-7. PubMed ID: 11796487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.