These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 31518923)
1. Simultaneous scavenging of Cr(VI) from soil and facilitation of nutrient uptake in plant using a mixture of carbon microfibers and nanofibers. Kumar A; Gahoi P; Verma N Chemosphere; 2020 Jan; 239():124760. PubMed ID: 31518923 [TBL] [Abstract][Full Text] [Related]
2. Effect of chromium (VI) toxicity on morpho-physiological characteristics, yield, and yield components of two chickpea (Cicer arietinum L.) varieties. Singh D; Sharma NL; Singh CK; Sarkar SK; Singh I; Dotaniya ML PLoS One; 2020; 15(12):e0243032. PubMed ID: 33270694 [TBL] [Abstract][Full Text] [Related]
3. Assessment of toxic impact of metals on proline, antioxidant enzymes, and biological characteristics of Pseudomonas aeruginosa inoculated Cicer arietinum grown in chromium and nickel-stressed sandy clay loam soils. Saif S; Khan MS Environ Monit Assess; 2018 Apr; 190(5):290. PubMed ID: 29666936 [TBL] [Abstract][Full Text] [Related]
4. Glycine betaine modulates chromium (VI)-induced morpho-physiological and biochemical responses to mitigate chromium toxicity in chickpea (Cicer arietinum L.) cultivars. Singh D; Singh CK; Singh D; Sarkar SK; Prasad SK; Sharma NL; Singh I Sci Rep; 2022 May; 12(1):8005. PubMed ID: 35568714 [TBL] [Abstract][Full Text] [Related]
5. Remediation of hexavalent chromium contaminated water through zero-valent iron nanoparticles and effects on tomato plant growth performance. Brasili E; Bavasso I; Petruccelli V; Vilardi G; Valletta A; Dal Bosco C; Gentili A; Pasqua G; Di Palma L Sci Rep; 2020 Feb; 10(1):1920. PubMed ID: 32024866 [TBL] [Abstract][Full Text] [Related]
6. Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Buendía-González L; Orozco-Villafuerte J; Cruz-Sosa F; Barrera-Díaz CE; Vernon-Carter EJ Bioresour Technol; 2010 Aug; 101(15):5862-7. PubMed ID: 20347590 [TBL] [Abstract][Full Text] [Related]
7. Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Gardea-Torresdey JL; de la Rosa G; Peralta-Videa JR; Montes M; Cruz-Jimenez G; Cano-Aguilera I Arch Environ Contam Toxicol; 2005 Feb; 48(2):225-32. PubMed ID: 15696348 [TBL] [Abstract][Full Text] [Related]
8. Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Wani PA; Khan MS; Zaidi A Biotechnol Lett; 2008 Jan; 30(1):159-63. PubMed ID: 17849087 [TBL] [Abstract][Full Text] [Related]
9. Paenibacillus lentimorbus enhances growth of chickpea (Cicer arietinum L.) in chromium-amended soil. Khan N; Mishra A; Chauhan PS; Sharma YK; Nautiyal CS Antonie Van Leeuwenhoek; 2012 Feb; 101(2):453-9. PubMed ID: 21909789 [TBL] [Abstract][Full Text] [Related]
10. Phytotoxicity and bioaccumulation of copper and chromium using barley (Hordeum vulgare L.) in spiked artificial and natural forest soils. Ali NA; Ater M; Sunahara GI; Robidoux PY Ecotoxicol Environ Saf; 2004 Mar; 57(3):363-74. PubMed ID: 15041259 [TBL] [Abstract][Full Text] [Related]
11. Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Wani PA; Khan MS Food Chem Toxicol; 2010 Nov; 48(11):3262-7. PubMed ID: 20813149 [TBL] [Abstract][Full Text] [Related]
12. Amelioration effect of chromium-tolerant bacteria on growth, physiological properties and chromium mobilization in chickpea (Cicer arietinum) under chromium stress. Shreya D; Jinal HN; Kartik VP; Amaresan N Arch Microbiol; 2020 May; 202(4):887-894. PubMed ID: 31893290 [TBL] [Abstract][Full Text] [Related]
13. Kocuria flava induced growth and chromium accumulation in Cicer arietinum L. Singh NK; Rai UN; Verma DK; Rathore G Int J Phytoremediation; 2014; 16(1):14-28. PubMed ID: 24912212 [TBL] [Abstract][Full Text] [Related]
14. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI. Wang Y; Fang Z; Kang Y; Tsang EP J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637 [TBL] [Abstract][Full Text] [Related]
15. Synergistic effect of chickpea plants and Mesorhizobium as a natural system for chromium phytoremediation. Velez PA; Talano MA; Paisio CE; Agostini E; González PS Environ Technol; 2017 Sep; 38(17):2164-2172. PubMed ID: 27788623 [TBL] [Abstract][Full Text] [Related]
16. Enhancing chromium resistance and bulb quality in onion (Allium cepa L.) through copper nanoparticles and possible health risk. Naseem Z; Naveed M; Asif M; Alamri S; Nawaz S; Siddiqui MH; Mustafa A BMC Plant Biol; 2024 Aug; 24(1):777. PubMed ID: 39143569 [TBL] [Abstract][Full Text] [Related]
17. An in situ study of growth of Lemongrass Cymbopogon flexuosus (Nees ex Steud.) W. Watson on varying concentration of Chromium (Cr Patra DK; Pradhan C; Patra HK Chemosphere; 2018 Feb; 193():793-799. PubMed ID: 29175407 [TBL] [Abstract][Full Text] [Related]
18. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Shahid M; Shamshad S; Rafiq M; Khalid S; Bibi I; Niazi NK; Dumat C; Rashid MI Chemosphere; 2017 Jul; 178():513-533. PubMed ID: 28347915 [TBL] [Abstract][Full Text] [Related]
19. [Effect of Cr(VI) stress on growth of three herbaceous plants and their Cr uptake]. Wang AY; Huang SS; Zhong GF; Xu GB; Liu ZX; Shen XB Huan Jing Ke Xue; 2012 Jun; 33(6):2028-37. PubMed ID: 22946192 [TBL] [Abstract][Full Text] [Related]
20. Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications. Hood AR; Saurakhiya N; Deva D; Sharma A; Verma N Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4313-22. PubMed ID: 23910348 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]