These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 31519010)

  • 1. Alloying effects on the plasticity of magnesium: comprehensive analysis of influences of all five slip systems.
    Ding Z; Zhao G; Sun H; Li S; Ma F; Lavernia EJ; Zhu Y; Liu W
    J Phys Condens Matter; 2020 Jan; 32(1):015401. PubMed ID: 31519010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solute effect on basal and prismatic slip systems of Mg.
    Moitra A; Kim SG; Horstemeyer MF
    J Phys Condens Matter; 2014 Nov; 26(44):445004. PubMed ID: 25273695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized Stacking Fault Energy of {10-11}<11-23> Slip System in Mg-Based Binary Alloys: A First Principles Study.
    Dou Y; Luo H; Zhang J; Tang X
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31083518
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Cross-Slip Mechanism of Pyramidal Screw Dislocations in Magnesium.
    Itakura M; Kaburaki H; Yamaguchi M; Tsuru T
    Phys Rev Lett; 2016 Jun; 116(22):225501. PubMed ID: 27314728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and energetics of 〈c + a〉 dislocation cross-slip in hcp metals.
    Wu Z; Curtin WA
    Proc Natl Acad Sci U S A; 2016 Oct; 113(40):11137-11142. PubMed ID: 27647908
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution softening in magnesium alloys: the effect of solid solutions on the dislocation core structure and nonbasal slip.
    Tsuru T; Udagawa Y; Yamaguchi M; Itakura M; Kaburaki H; Kaji Y
    J Phys Condens Matter; 2013 Jan; 25(2):022202. PubMed ID: 23220883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generalized stacking fault energy of carbon-alloyed paramagnetic [Formula: see text]-Fe.
    Xie R; Li W; Lu S; Song Y; Vitos L
    J Phys Condens Matter; 2019 Feb; 31(6):065703. PubMed ID: 30524044
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stacking fault energies and slip in nanocrystalline metals.
    Van Swygenhoven H; Derlet PM; Frøseth AG
    Nat Mater; 2004 Jun; 3(6):399-403. PubMed ID: 15156199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of alloying element and temperature on the stacking fault energies of dilute Ni-base superalloys.
    Shang SL; Zacherl CL; Fang HZ; Wang Y; Du Y; Liu ZK
    J Phys Condens Matter; 2012 Dec; 24(50):505403. PubMed ID: 23172684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origins of high hardening and low ductility in magnesium.
    Wu Z; Curtin WA
    Nature; 2015 Oct; 526(7571):62-7. PubMed ID: 26390153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of alloying on slip intermittency and the implications for dwell fatigue in titanium.
    Worsnop FF; Lim RE; Bernier JV; Pagan DC; Xu Y; McAuliffe TP; Rugg D; Dye D
    Nat Commun; 2022 Oct; 13(1):5949. PubMed ID: 36216805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peierls stress of dislocations in molecular crystal cyclotrimethylene trinitramine.
    Mathew N; Picu CR; Chung PW
    J Phys Chem A; 2013 Jun; 117(25):5326-34. PubMed ID: 23734970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generalized stacking fault energies of alloys.
    Li W; Lu S; Hu QM; Kwon SK; Johansson B; Vitos L
    J Phys Condens Matter; 2014 Jul; 26(26):265005. PubMed ID: 24903220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generalized-stacking-fault energy and twin-boundary energy of hexagonal close-packed Au: A first-principles calculation.
    Wang C; Wang H; Huang T; Xue X; Qiu F; Jiang Q
    Sci Rep; 2015 May; 5():10213. PubMed ID: 25998415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles study of crystallographic slip modes in ω-Zr.
    Kumar A; Kumar MA; Beyerlein IJ
    Sci Rep; 2017 Aug; 7(1):8932. PubMed ID: 28827649
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy investigation of effects of O on mechanical properties of NiAl intermetallics.
    Hu XL; Liu LH; Zhang Y; Lu GH; Wang T
    J Phys Condens Matter; 2011 Jan; 23(2):025501. PubMed ID: 21406842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The behaviour of stacking fault energy upon interstitial alloying.
    Lee JY; Koo YM; Lu S; Vitos L; Kwon SK
    Sci Rep; 2017 Sep; 7(1):11074. PubMed ID: 28894163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasticity mechanisms in HfN at elevated and room temperature.
    Vinson K; Yu XX; De Leon N; Weinberger CR; Thompson GB
    Sci Rep; 2016 Oct; 6():34571. PubMed ID: 27708354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys.
    Ding J; Yu Q; Asta M; Ritchie RO
    Proc Natl Acad Sci U S A; 2018 Sep; 115(36):8919-8924. PubMed ID: 30127034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The synchronous improvement of strength and plasticity (SISP) in new Ni-Co based disc superalloys by controling stacking fault energy.
    Xu H; Zhang ZJ; Zhang P; Cui CY; Jin T; Zhang ZF
    Sci Rep; 2017 Aug; 7(1):8046. PubMed ID: 28808312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.