These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 31519017)

  • 21. Nickel-Rich Layered Cathode Materials for Lithium-Ion Batteries.
    Ye Z; Qiu L; Yang W; Wu Z; Liu Y; Wang G; Song Y; Zhong B; Guo X
    Chemistry; 2021 Mar; 27(13):4249-4269. PubMed ID: 33073440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and Electrochemical Properties of Low-Cobalt-Content LiNi
    He LP; Li K; Zhang Y; Liu J
    ACS Appl Mater Interfaces; 2020 Jun; 12(25):28253-28263. PubMed ID: 32484644
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Recent achievements toward the development of Ni-based layered oxide cathodes for fast-charging Li-ion batteries.
    Zhang Y; Kim JC; Song HW; Lee S
    Nanoscale; 2023 Mar; 15(9):4195-4218. PubMed ID: 36757735
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Morphological Evolution of High-Voltage Spinel LiNi(0.5)Mn(1.5)O4 Cathode Materials for Lithium-Ion Batteries: The Critical Effects of Surface Orientations and Particle Size.
    Liu H; Wang J; Zhang X; Zhou D; Qi X; Qiu B; Fang J; Kloepsch R; Schumacher G; Liu Z; Li J
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4661-75. PubMed ID: 26824793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Simple Glycerol-Assisted and Morphology-Controllable Solvothermal Synthesis of Lithium-Ion Battery-Layered Li
    Fang J; An H; Qin F; Wang H; Chen C; Wang X; Li Y; Hong B; Li J
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55926-55935. PubMed ID: 33284007
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance.
    Fu C; Li G; Luo D; Li Q; Fan J; Li L
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15822-31. PubMed ID: 25203668
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Understanding Conversion-Type Electrodes for Lithium Rechargeable Batteries.
    Yu SH; Feng X; Zhang N; Seok J; Abruña HD
    Acc Chem Res; 2018 Feb; 51(2):273-281. PubMed ID: 29373023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Few Atomic Layered Lithium Cathode Materials to Achieve Ultrahigh Rate Capability in Lithium-Ion Batteries.
    Tai Z; Subramaniyam CM; Chou SL; Chen L; Liu HK; Dou SX
    Adv Mater; 2017 Sep; 29(34):. PubMed ID: 28685878
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recent Advances in Layered Metal-Oxide Cathodes for Application in Potassium-Ion Batteries.
    Nathan MGT; Yu H; Kim GT; Kim JH; Cho JS; Kim J; Kim JK
    Adv Sci (Weinh); 2022 Jun; 9(18):e2105882. PubMed ID: 35478355
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent Progress in the Design of Advanced Cathode Materials and Battery Models for High-Performance Lithium-X (X = O
    Xu J; Ma J; Fan Q; Guo S; Dou S
    Adv Mater; 2017 Jul; 29(28):. PubMed ID: 28488763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Role of Zr Doping in Stabilizing Li[Ni
    Choi J; Lee SY; Yoon S; Kim KH; Kim M; Hong SH
    ChemSusChem; 2019 Jun; 12(11):2439-2446. PubMed ID: 30916373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy and environmental assessment of a traction lithium-ion battery pack for plug-in hybrid electric vehicles.
    Cusenza MA; Bobba S; Ardente F; Cellura M; Di Persio F
    J Clean Prod; 2019 Apr; 215():634-649. PubMed ID: 31007414
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In Situ Chelating Synthesis of Hierarchical LiNi
    Zhang Y; Jia D; Tang Y; Huang Y; Pang W; Guo Z; Zhou Z
    Small; 2018 Jul; 14(27):e1704354. PubMed ID: 29862637
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Countering the Segregation of Transition-Metal Ions in LiMn1/3 Co1/3 Ni1/3 O2 Cathode for Ultralong Life and High-Energy Li-Ion Batteries.
    Luo D; Fang S; Tamiya Y; Yang L; Hirano S
    Small; 2016 Aug; 12(32):4421-30. PubMed ID: 27389965
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sulfate-Based Cathode Materials for Li- and Na-Ion Batteries.
    Lander L; Tarascon JM; Yamada A
    Chem Rec; 2018 Oct; 18(10):1394-1408. PubMed ID: 30203910
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The oxygen vacancy in Li-ion battery cathode materials.
    Tang ZK; Xue YF; Teobaldi G; Liu LM
    Nanoscale Horiz; 2020 Nov; 5(11):1453-1466. PubMed ID: 33103682
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-voltage positive electrode materials for lithium-ion batteries.
    Li W; Song B; Manthiram A
    Chem Soc Rev; 2017 May; 46(10):3006-3059. PubMed ID: 28440379
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure Evolution from Layered to Spinel during Synthetic Control and Cycling Process of Fe-Containing Li-Rich Cathode Materials for Lithium-Ion Batteries.
    Zhao T; Zhou N; Zhang X; Xue Q; Wang Y; Yang M; Li L; Chen R
    ACS Omega; 2017 Sep; 2(9):5601-5610. PubMed ID: 31457825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries.
    Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA
    Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.