These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31519043)

  • 1. LVAD speed increase during exercise, which patients would benefit the most? A simulation study.
    Gross C; Moscato F; Schlöglhofer T; Maw M; Meyns B; Marko C; Wiedemann D; Zimpfer D; Schima H; Fresiello L
    Artif Organs; 2020 Mar; 44(3):239-247. PubMed ID: 31519043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exercise physiology with a left ventricular assist device: Analysis of heart-pump interaction with a computational simulator.
    Fresiello L; Rademakers F; Claus P; Ferrari G; Di Molfetta A; Meyns B
    PLoS One; 2017; 12(7):e0181879. PubMed ID: 28738087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hemodynamic exercise responses with a continuous-flow left ventricular assist device: Comparison of patients' response and cardiorespiratory simulations.
    Gross C; Fresiello L; Schlöglhofer T; Dimitrov K; Marko C; Maw M; Meyns B; Wiedemann D; Zimpfer D; Schima H; Moscato F
    PLoS One; 2020; 15(3):e0229688. PubMed ID: 32187193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of left ventricular assist device pressure-flow characteristic on exercise physiology: Assessment with a verified numerical model.
    Graefe R; Henseler A; Körfer R; Meyns B; Fresiello L
    Int J Artif Organs; 2019 Sep; 42(9):490-499. PubMed ID: 31104554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exercise physiology in left ventricular assist device patients: insights from hemodynamic simulations.
    Fresiello L; Gross C; Jacobs S
    Ann Cardiothorac Surg; 2021 May; 10(3):339-352. PubMed ID: 34159115
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproduction of continuous flow left ventricular assist device experimental data by means of a hybrid cardiovascular model with baroreflex control.
    Fresiello L; Zieliński K; Jacobs S; Di Molfetta A; Pałko KJ; Bernini F; Martin M; Claus P; Ferrari G; Trivella MG; Górczyńska K; Darowski M; Meyns B; Kozarski M
    Artif Organs; 2014 Jun; 38(6):456-68. PubMed ID: 24117988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Starling-like total work controller for rotary blood pumps: An in vitro evaluation.
    Wu EL; Stevens MC; Nestler F; Pauls JP; Bradley AP; Tansley G; Fraser JF; Gregory SD
    Artif Organs; 2020 Mar; 44(3):E40-E53. PubMed ID: 31520408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cavoaortic shunt improves hemodynamics with preserved oxygen delivery in experimental right ventricular failure during left ventricular assist device therapy.
    Vikholm P; Schiller P; Johansson J; Hellgren L
    J Thorac Cardiovasc Surg; 2014 Feb; 147(2):625-31. PubMed ID: 23477692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cardiopulmonary Performance Among Heart Failure Patients Before and After Left Ventricular Assist Device Implantation.
    Buchanan C; Buchanan C; Riordan M; Byrd J; Schulte M; Kohrt WM; Ambardekar AV; Allen LA; Wolfel G; Lawley J; Levine BD; Cornwell WK
    JACC Heart Fail; 2024 Jan; 12(1):117-129. PubMed ID: 37632493
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The impact of right ventricular hemodynamics on the performance of a left ventricular assist device in a numerical simulation model.
    Thut TLZ; Petrou A; Meboldt M; Daners MS; Wilhelm MJ
    Biomed Tech (Berl); 2023 Oct; 68(5):503-510. PubMed ID: 37099745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haemodynamic Effect of Left Atrial and Left Ventricular Cannulation with a Rapid Speed Modulated Rotary Blood Pump During Rest and Exercise: Investigation in a Numerical Cardiorespiratory Model.
    Wu EL; Fresiello L; Kleinhyer M; Meyns B; Fraser JF; Tansley G; Gregory SD
    Cardiovasc Eng Technol; 2020 Aug; 11(4):350-361. PubMed ID: 32557185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of acute haemodynamic outcomes of the surgical strategies for the right ventricular failure treatment in pediatric LVAD.
    Di Molfetta A; Ferrari G; Iacobelli R; Filippelli S; Fresiello L; Gagliardi MG; Toscano A; Trivella MG; Amodeo A
    Int J Artif Organs; 2015 Dec; 38(12):638-45. PubMed ID: 26847500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exercise hemodynamics during extended continuous flow left ventricular assist device support: the response of systemic cardiovascular parameters and pump performance.
    Martina J; de Jonge N; Rutten M; Kirkels JH; Klöpping C; Rodermans B; Sukkel E; Hulstein N; Mol B; Lahpor J
    Artif Organs; 2013 Sep; 37(9):754-62. PubMed ID: 24074245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ventricular contractility and compliance measured during axial flow blood pump support: in vitro study.
    Jhun CS; Cysyk JP
    Artif Organs; 2014 Apr; 38(4):309-15. PubMed ID: 24102297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-tuning management of the Heart Assist 5 left ventricular assist device with two- and three-dimensional echocardiography.
    Demirozu ZT; Arat N; Kucukaksu DS
    Cardiovasc J Afr; 2016; 27(4):208-212. PubMed ID: 27841907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Central and peripheral blood flow during exercise with a continuous-flow left ventricular assist device: constant versus increasing pump speed: a pilot study.
    Brassard P; Jensen AS; Nordsborg N; Gustafsson F; Møller JE; Hassager C; Boesgaard S; Hansen PB; Olsen PS; Sander K; Secher NH; Madsen PL
    Circ Heart Fail; 2011 Sep; 4(5):554-60. PubMed ID: 21765126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiology of the native heart and Thermo Cardiosystems left ventricular assist device complex at rest and during exercise: implications for chronic support.
    Branch KR; Dembitsky WP; Peterson KL; Adamson R; Gordon JB; Smith SC; Jaski BE
    J Heart Lung Transplant; 1994; 13(4):641-50; discussion 651. PubMed ID: 7947881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro and in vivo characterization of three different modes of pump operation when using a left ventricular assist device as a right ventricular assist device.
    Stevens MC; Gregory SD; Nestler F; Thomson B; Choudhary J; Garlick B; Pauls JP; Fraser JF; Timms D
    Artif Organs; 2014 Nov; 38(11):931-9. PubMed ID: 24660783
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of hemodynamics under left ventricular assist device.
    Kakino T; Saku K; Sakamoto T; Sakamoto K; Akashi T; Ikeda M; Ide T; Kishi T; Tsutsui H; Sunagawa K
    Am J Physiol Heart Circ Physiol; 2017 Jan; 312(1):H80-H88. PubMed ID: 27793856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A numerical model applied to the simulation of cardiovascular hemodynamics and operating condition of continuous-flow left ventricular assist device.
    Liu H; Liu S; Ma X; Zhang Y
    Math Biosci Eng; 2020 Oct; 17(6):7519-7543. PubMed ID: 33378908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.