BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 31519100)

  • 21. Enhanced arsenite removal through surface-catalyzed oxidative coagulation treatment.
    Li Y; Bland GD; Yan W
    Chemosphere; 2016 May; 150():650-658. PubMed ID: 26897520
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single and binary sorption of Cr(III) and Ni(II) onto modified pine bark.
    Arim AL; Guzzo G; Quina MJ; Gando-Ferreira LM
    Environ Sci Pollut Res Int; 2018 Oct; 25(28):28039-28049. PubMed ID: 30066077
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Coagulation characteristic and mechanism of Fe(III) salts toward typical Cr(III) complexes in wastewater treatment.
    Ye Y; Yang N; Xiao L; Li Q; Pan F; Xia D
    Environ Sci Pollut Res Int; 2023 Mar; 30(11):30122-30129. PubMed ID: 36427131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Application of UV-irradiated Fe(III)-nitrilotriacetic acid (UV-Fe(III)NTA) and UV-NTA-Fenton systems to degrade model and natural occurring naphthenic acids.
    Zhang Y; Chelme-Ayala P; Klamerth N; Gamal El-Din M
    Chemosphere; 2017 Jul; 179():359-366. PubMed ID: 28388447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ferrate(VI)-prompted removal of metals in aqueous media: mechanistic delineation of enhanced efficiency via metal entrenchment in magnetic oxides.
    Prucek R; Tuček J; Kolařík J; Hušková I; Filip J; Varma RS; Sharma VK; Zbořil R
    Environ Sci Technol; 2015 Feb; 49(4):2319-27. PubMed ID: 25607569
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Crab shell-based biosorption technology for the treatment of nickel-bearing electroplating industrial effluents.
    Vijayaraghavan K; Palanivelu K; Velan M
    J Hazard Mater; 2005 Mar; 119(1-3):251-4. PubMed ID: 15752873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reactions of trivacant Wells-Dawson heteropolytungstates. Ionic strength and Jahn-Teller effects on formation in multi-iron complexes.
    Anderson TM; Zhang X; Hardcastle KI; Hill CL
    Inorg Chem; 2002 May; 41(9):2477-88. PubMed ID: 11978116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water Decontamination from Cr(III)-Organic Complexes Based on Pyrite/H
    Ye Y; Shan C; Zhang X; Liu H; Wang D; Lv L; Pan B
    Environ Sci Technol; 2018 Sep; 52(18):10657-10664. PubMed ID: 30130960
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ni(II) removal from aqueous effluents by silylated clays.
    Carvalho WA; Vignado C; Fontana J
    J Hazard Mater; 2008 May; 153(3):1240-7. PubMed ID: 17980481
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Effectiveness and mechanism of permanganate enhancing arsenite co-precipitation with ferric chloride].
    Liu RP; Li X; Xia SJ; Wu RC; Li GB
    Huan Jing Ke Xue; 2005 Jan; 26(1):72-5. PubMed ID: 15859412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of mesoporous nanocomposite of graphene oxide with magnesium ferrite for efficient sequestration of Ni (II) and Pb (II) ions: Adsorption, thermodynamic and kinetic studies.
    Kaur N; Kaur M; Singh D
    Environ Pollut; 2019 Oct; 253():111-119. PubMed ID: 31302397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Removal of arsenic from water: effect of calcium ions on As(III) removal in the KMnO(4)-Fe(II) process.
    Guan X; Ma J; Dong H; Jiang L
    Water Res; 2009 Dec; 43(20):5119-28. PubMed ID: 19201439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and characterization of X (X = Ni or Fe) modified BaTiO
    Balu K; Abisheik T; Niyitanga T; Kumaravel S; Ali W; Ehtisham Khan M; Kashif Ali S; Bashiri AH; Zakri W; Pandiyan V
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov; 320():124556. PubMed ID: 38850820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Chitosan-bound pyridinedicarboxylate Ni(II) and Fe(III) complex biopolymer films as waste water decyanidation agents.
    Adewuyi S; Jacob JM; Olaleye OO; Abdulraheem TO; Tayo JA; Oladoyinbo FO
    Carbohydr Polym; 2016 Oct; 151():1235-1239. PubMed ID: 27474675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Highly efficient removal of chromium(VI) by Fe/Ni bimetallic nanoparticles in an ultrasound-assisted system.
    Zhou X; Jing G; Lv B; Zhou Z; Zhu R
    Chemosphere; 2016 Oct; 160():332-41. PubMed ID: 27393969
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparison of the dechlorination mechanisms and Ni release styles of chloroalkane and chloroalkene removal using nickel/iron nanoparticles.
    Zhang W; Jia N; Han X; Qiu Z; Lv S; Lin K; Ying W
    Environ Technol; 2016 Aug; 37(16):2088-98. PubMed ID: 26776083
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transformation of roxarsone during UV disinfection in the presence of ferric ions.
    Chen Y; Lin C; Zhou Y; Long L; Li L; Tang M; Liu Z; Pozdnyakov IP; Huang LZ
    Chemosphere; 2019 Oct; 233():431-439. PubMed ID: 31176907
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Removal of nickel ions from industrial plating effluents using activated alumina as adsorbent.
    Revathi M; Kavitha B; Vasudevan T
    J Environ Sci Eng; 2005 Jan; 47(1):1-6. PubMed ID: 16669327
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reevaluation for UV photolysis of Fe(III) inducing tetracycline abatement: Overlooked significance of complexation-assistance in environmental fates of antibiotics.
    Cheng X; Wang J; Yang B; Wang C; Chu W; Guo H
    J Hazard Mater; 2023 Sep; 458():131909. PubMed ID: 37459759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The humic acid influenced the behavior and reactivity of Ni/Fe nanoparticles in the removal of deca-brominated diphenyl ether from aqueous solution.
    Yi Y; Wu J; Tu G; Zhao D; Fang Z; Tsang PE
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10136-10147. PubMed ID: 30747323
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.