BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31519396)

  • 1. Suppression of lactate production of Lactobacillus reuteri JCM1112 by co-feeding glycerol with glucose.
    Ichinose R; Fukuda Y; Yamasaki-Yashiki S; Katakura Y
    J Biosci Bioeng; 2020 Jan; 129(1):110-115. PubMed ID: 31519396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppression of lactate production in fed-batch culture of some lactic acid bacteria with sucrose as the carbon source.
    Kawai M; Tsuchiya A; Ishida J; Yoda N; Yashiki-Yamasaki S; Katakura Y
    J Biosci Bioeng; 2020 May; 129(5):535-540. PubMed ID: 31836379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated process for the production of 1,3-propanediol, lactate and 3-hydroxypropionic acid by an engineered Lactobacillus reuteri.
    Suppuram P; Ramakrishnan GG; Subramanian R
    Biosci Biotechnol Biochem; 2019 Apr; 83(4):755-762. PubMed ID: 30582401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of 1,3-propanediol from glycerol with Lactobacillus reuteri: effect of operating variables.
    Jolly J; Hitzmann B; Ramalingam S; Ramachandran KB
    J Biosci Bioeng; 2014 Aug; 118(2):188-94. PubMed ID: 24525111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactobacillus reuteri growth and fermentation under high pressure towards the production of 1,3-propanediol.
    Mota MJ; Lopes RP; Sousa S; Gomes AM; Delgadillo I; Saraiva JA
    Food Res Int; 2018 Nov; 113():424-432. PubMed ID: 30195537
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flux analysis of the Lactobacillus reuteri propanediol-utilization pathway for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol.
    Dishisha T; Pereyra LP; Pyo SH; Britton RA; Hatti-Kaul R
    Microb Cell Fact; 2014 May; 13():76. PubMed ID: 24886501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancement of 1,3-propanediol production from industrial by-product by Lactobacillus reuteri CH53.
    Ju JH; Wang D; Heo SY; Kim MS; Seo JW; Kim YM; Kim DH; Kang SA; Kim CH; Oh BR
    Microb Cell Fact; 2020 Jan; 19(1):6. PubMed ID: 31931797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Culture conditions affect Lactobacillus reuteri DSM 17938 ability to perform glycerol bioconversion into 3-hydroxypropionic acid.
    Nguyen TL; Saulou-Bérion C; Delettre J; Béal C
    J Biosci Bioeng; 2021 May; 131(5):501-508. PubMed ID: 33597083
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crosslinked, cryostructured Lactobacillus reuteri monoliths for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol.
    Zaushitsyna O; Dishisha T; Hatti-Kaul R; Mattiasson B
    J Biotechnol; 2017 Jan; 241():22-32. PubMed ID: 27829124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationships between the use of Embden Meyerhof pathway (EMP) or Phosphoketolase pathway (PKP) and lactate production capabilities of diverse Lactobacillus reuteri strains.
    Burgé G; Saulou-Bérion C; Moussa M; Allais F; Athes V; Spinnler HE
    J Microbiol; 2015 Oct; 53(10):702-10. PubMed ID: 26428921
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic engineering of Lactobacillus reuteri DSM 20,016 for improved 1,3-propanediol production from glycerol.
    Singh K; Ainala SK; Park S
    Bioresour Technol; 2021 Oct; 338():125590. PubMed ID: 34298333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved 1,3-Propanediol Synthesis from Glycerol by the Robust Lactobacillus reuteri Strain DSM 20016.
    Ricci MA; Russo A; Pisano I; Palmieri L; de Angelis M; Agrimi G
    J Microbiol Biotechnol; 2015 Jun; 25(6):893-902. PubMed ID: 25588555
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective bioconversion of 1,3-propanediol from biodiesel-derived crude glycerol using organic acid resistance-enhanced Lactobacillus reuteri JH83.
    Ju JH; Heo SY; Choi SW; Kim YM; Kim MS; Kim CH; Oh BR
    Bioresour Technol; 2021 Oct; 337():125361. PubMed ID: 34320778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-transformation of Glycerol to 3-Hydroxypropionic Acid Using Resting Cells of Lactobacillus reuteri.
    Ramakrishnan GG; Nehru G; Suppuram P; Balasubramaniyam S; Gulab BR; Subramanian R
    Curr Microbiol; 2015 Oct; 71(4):517-23. PubMed ID: 26204968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient production of 1,3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2,3-butanediol deficient mutant of Klebsiella pneumoniae.
    Oh BR; Lee SM; Heo SY; Seo JW; Kim CH
    Microb Cell Fact; 2018 Jun; 17(1):92. PubMed ID: 29907119
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of lactate production by aerobic fed-batch cultures of Lactococcus lactis.
    Sano A; Takatera M; Kawai M; Ichinose R; Yamasaki-Yashiki S; Katakura Y
    J Biosci Bioeng; 2020 Oct; 130(4):402-408. PubMed ID: 32669208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homoethanol Production from Glycerol and Gluconate Using Recombinant
    Tao W; Wang Y; Walters E; Lin H; Li S; Huang H; Kasuga T; Fan Z
    Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox Balance in Lactobacillus reuteri DSM20016: Roles of Iron-Dependent Alcohol Dehydrogenases in Glucose/ Glycerol Metabolism.
    Chen L; Bromberger PD; Nieuwenhuiys G; Hatti-Kaul R
    PLoS One; 2016; 11(12):e0168107. PubMed ID: 28030590
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of the propanediol utilization protein PduP of Lactobacillus reuteri for 3-hydroxypropionic acid production from glycerol.
    Luo LH; Seo JW; Baek JO; Oh BR; Heo SY; Hong WK; Kim DH; Kim CH
    Appl Microbiol Biotechnol; 2011 Feb; 89(3):697-703. PubMed ID: 20890600
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of 3-hydroxypropionic acid from 3-hydroxypropionaldehyde by recombinant Escherichia coli co-expressing Lactobacillus reuteri propanediol utilization enzymes.
    Sabet-Azad R; Sardari RR; Linares-Pastén JA; Hatti-Kaul R
    Bioresour Technol; 2015 Mar; 180():214-21. PubMed ID: 25614245
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.