These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 31519658)
1. Methyl Selenol as a Precursor in Selenite Reduction to Se/S Species by Methane-Oxidizing Bacteria. Eswayah AS; Hondow N; Scheinost AC; Merroun M; Romero-González M; Smith TJ; Gardiner PHE Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31519658 [TBL] [Abstract][Full Text] [Related]
3. Biotransformation and detoxification of selenite by microbial biogenesis of selenium-sulfur nanoparticles. Vogel M; Fischer S; Maffert A; Hübner R; Scheinost AC; Franzen C; Steudtner R J Hazard Mater; 2018 Feb; 344():749-757. PubMed ID: 29156387 [TBL] [Abstract][Full Text] [Related]
4. Detoxification, Active Uptake, and Intracellular Accumulation of Chromium Species by a Methane-Oxidizing Bacterium. Enbaia S; Eswayah A; Hondow N; Gardiner PHE; Smith TJ Appl Environ Microbiol; 2021 Jan; 87(2):. PubMed ID: 33127813 [TBL] [Abstract][Full Text] [Related]
5. Insights into selenite reduction and biogenesis of elemental selenium nanoparticles by two environmental isolates of Burkholderia fungorum. Khoei NS; Lampis S; Zonaro E; Yrjälä K; Bernardi P; Vallini G N Biotechnol; 2017 Jan; 34():1-11. PubMed ID: 27717878 [TBL] [Abstract][Full Text] [Related]
6. Ochrobactrum sp. MPV1 from a dump of roasted pyrites can be exploited as bacterial catalyst for the biogenesis of selenium and tellurium nanoparticles. Zonaro E; Piacenza E; Presentato A; Monti F; Dell'Anna R; Lampis S; Vallini G Microb Cell Fact; 2017 Nov; 16(1):215. PubMed ID: 29183326 [TBL] [Abstract][Full Text] [Related]
7. Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions. Zhang J; Wang Y; Shao Z; Li J; Zan S; Zhou S; Yang R J Environ Sci (China); 2019 Mar; 77():238-249. PubMed ID: 30573088 [TBL] [Abstract][Full Text] [Related]
8. Reduction of selenite to Se(0) nanoparticles by filamentous bacterium Streptomyces sp. ES2-5 isolated from a selenium mining soil. Tan Y; Yao R; Wang R; Wang D; Wang G; Zheng S Microb Cell Fact; 2016 Sep; 15(1):157. PubMed ID: 27630128 [TBL] [Abstract][Full Text] [Related]
9. Multi-pathways-mediated mechanisms of selenite reduction and elemental selenium nanoparticles biogenesis in the yeast-like fungus Aureobasidium melanogenum I15. Xue SJ; Zhang XT; Li XC; Zhao FY; Shu X; Jiang WW; Zhang JY J Hazard Mater; 2024 May; 470():134204. PubMed ID: 38579586 [TBL] [Abstract][Full Text] [Related]
11. Selenite reduction and biogenesis of selenium-nanoparticles by different size groups of aerobic granular sludge under aerobic conditions. Sudharsan G; Sarvajith M; Nancharaiah YV J Environ Manage; 2023 May; 334():117482. PubMed ID: 36801684 [TBL] [Abstract][Full Text] [Related]
12. Selenium Nanoparticle Synthesized by Wang Y; Shu X; Hou J; Lu W; Zhao W; Huang S; Wu L Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30501097 [TBL] [Abstract][Full Text] [Related]
13. In vivo quantification of volatile organoselenium compounds released by bacteria exposed to selenium with HS-SPME-GC-MS. Effect of selenite and selenium nanoparticles. Moreno-Martin G; Sanz-Landaluze J; León-González ME; Madrid Y Talanta; 2021 Mar; 224():121907. PubMed ID: 33379111 [TBL] [Abstract][Full Text] [Related]
14. Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation. Tugarova AV; Mamchenkova PV; Khanadeev VA; Kamnev AA N Biotechnol; 2020 Sep; 58():17-24. PubMed ID: 32184193 [TBL] [Abstract][Full Text] [Related]
15. Electricity from methane by Methylococcus capsulatus (Bath) and Methylosinus trichosporium OB3b. Jawaharraj K; Sudha Dhiman S; Bedwell S; Vemuri B; Islam J; Sani RK; Gadhamshetty V Bioresour Technol; 2021 Feb; 321():124398. PubMed ID: 33257167 [TBL] [Abstract][Full Text] [Related]
16. Biomimetic synthesis of selenium nanoparticles by Pseudomonas aeruginosa ATCC 27853: An approach for conversion of selenite. Kora AJ; Rastogi L J Environ Manage; 2016 Oct; 181():231-236. PubMed ID: 27353373 [TBL] [Abstract][Full Text] [Related]
17. Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions. Staicu LC; Ackerson CJ; Cornelis P; Ye L; Berendsen RL; Hunter WJ; Noblitt SD; Henry CS; Cappa JJ; Montenieri RL; Wong AO; Musilova L; Sura-de Jong M; van Hullebusch ED; Lens PN; Reynolds RJ; Pilon-Smits EA J Appl Microbiol; 2015 Aug; 119(2):400-10. PubMed ID: 25968181 [TBL] [Abstract][Full Text] [Related]
18. Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. Presentato A; Piacenza E; Anikovskiy M; Cappelletti M; Zannoni D; Turner RJ N Biotechnol; 2018 Mar; 41():1-8. PubMed ID: 29174512 [TBL] [Abstract][Full Text] [Related]
19. Microbial Transformations of Selenium Species of Relevance to Bioremediation. Eswayah AS; Smith TJ; Gardiner PH Appl Environ Microbiol; 2016 Aug; 82(16):4848-59. PubMed ID: 27260359 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium. Patel R; Hou CT; Felix A J Bacteriol; 1976 May; 126(2):1017-9. PubMed ID: 4428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]