These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 31519785)

  • 1. Micro-Flow Imaging: Estimation of the Contribution of Key Factors to the Variability of Subvisible Particle Count Measurement by a Nested Statistical Analysis.
    Zhang K; Wrzosek T; Desai KG; Monck M
    PDA J Pharm Sci Technol; 2020; 74(1):15-26. PubMed ID: 31519785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subvisible (2-100 μm) particle analysis during biotherapeutic drug product development: Part 2, experience with the application of subvisible particle analysis.
    Corvari V; Narhi LO; Spitznagel TM; Afonina N; Cao S; Cash P; Cecchini I; DeFelippis MR; Garidel P; Herre A; Koulov AV; Lubiniecki T; Mahler HC; Mangiagalli P; Nesta D; Perez-Ramirez B; Polozova A; Rossi M; Schmidt R; Simler R; Singh S; Weiskopf A; Wuchner K
    Biologicals; 2015 Nov; 43(6):457-73. PubMed ID: 26324466
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Factors Governing the Accuracy of Subvisible Particle Counting Methods.
    Ríos Quiroz A; Finkler C; Huwyler J; Mahler HC; Schmidt R; Koulov AV
    J Pharm Sci; 2016 Jul; 105(7):2042-52. PubMed ID: 27287519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unmasking translucent protein particles by improved micro-flow imaging™ algorithms.
    Pedersen JS; Persson M
    J Pharm Sci; 2014 Jan; 103(1):107-14. PubMed ID: 24281987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculating the mass of subvisible protein particles with improved accuracy using microflow imaging data.
    Kalonia C; Kumru OS; Prajapati I; Mathaes R; Engert J; Zhou S; Middaugh CR; Volkin DB
    J Pharm Sci; 2015 Feb; 104(2):536-47. PubMed ID: 25302696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free flow cytometry analysis of subvisible aggregates in liquid IgG1 antibody formulations.
    Nishi H; Mathäs R; Fürst R; Winter G
    J Pharm Sci; 2014 Jan; 103(1):90-9. PubMed ID: 24218205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing Impact on Monoclonal Antibody Drug Products: Protein Subvisible Particulate Formation Induced by Grinding Stress.
    Gikanga B; Eisner DR; Ovadia R; Day ES; Stauch OB; Maa YF
    PDA J Pharm Sci Technol; 2017; 71(3):172-188. PubMed ID: 27789805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Closing the Gap: Counting and Sizing of Particles Across Submicron Range by Flow Cytometry in Therapeutic Protein Products.
    Zhang L; Shi S; Antochshuk V
    J Pharm Sci; 2017 Nov; 106(11):3215-3221. PubMed ID: 28625725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Evaluation of Two Methods for Preparative Fractionation of Proteinaceous Subvisible Particles--Differential Centrifugation and FACS.
    Boll B; Folzer E; Finkler C; Huwyler J; Mahler HC; Schmidt R; Koulov AV
    Pharm Res; 2015 Dec; 32(12):3952-64. PubMed ID: 26195006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Measurement of subvisible particulates in lyophilised Erwinia chrysanthemi L-asparaginase and relationship with clinical experience.
    Gervais D; Corn T; Downer A; Smith S; Jennings A
    AAPS J; 2014 Jul; 16(4):784-90. PubMed ID: 24854894
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantification and characterization of micrometer and submicrometer subvisible particles in protein therapeutics by use of a suspended microchannel resonator.
    Patel AR; Lau D; Liu J
    Anal Chem; 2012 Aug; 84(15):6833-40. PubMed ID: 22794526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of solution properties on the counting and sizing of subvisible particle standards as measured by light obscuration and digital imaging methods.
    Werk T; Volkin DB; Mahler HC
    Eur J Pharm Sci; 2014 Mar; 53():95-108. PubMed ID: 24370624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of Inherent Particles and Mechanism of Thermal Stress Induced Particle Formation in HSV-2 Viral Vaccine Candidate.
    Li L; Kirkitadze M; Bhandal K; Roque C; Yang E; Carpick B; Rahman N
    Curr Pharm Biotechnol; 2017 Nov; 18(8):638-647. PubMed ID: 28914197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oil-Immersion Flow Imaging Microscopy for Quantification and Morphological Characterization of Submicron Particles in Biopharmaceuticals.
    Krause N; Kuhn S; Frotscher E; Nikels F; Hawe A; Garidel P; Menzen T
    AAPS J; 2021 Jan; 23(1):13. PubMed ID: 33398482
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convolutional Neural Networks Enable Highly Accurate and Automated Subvisible Particulate Classification of Biopharmaceuticals.
    Wang S; Liaw A; Chen YM; Su Y; Skomski D
    Pharm Res; 2023 Jun; 40(6):1447-1457. PubMed ID: 36471026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Collaborative Study for Analysis of Subvisible Particles Using Flow Imaging and Light Obscuration: Experiences in Japanese Biopharmaceutical Consortium.
    Kiyoshi M; Shibata H; Harazono A; Torisu T; Maruno T; Akimaru M; Asano Y; Hirokawa M; Ikemoto K; Itakura Y; Iwura T; Kikitsu A; Kumagai T; Mori N; Murase H; Nishimura H; Oda A; Ogawa T; Ojima T; Okabe S; Saito S; Saitoh S; Suetomo H; Takegami K; Takeuchi M; Yasukawa H; Uchiyama S; Ishii-Watabe A
    J Pharm Sci; 2019 Feb; 108(2):832-841. PubMed ID: 30121316
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Investigation on Grinding-Induced Subvisible Particle Formation during Mixing and Filling of Monoclonal Antibody Formulations.
    Gikanga B; Hui A; Maa YF
    PDA J Pharm Sci Technol; 2018; 72(2):117-133. PubMed ID: 29030532
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subvisible Particle Analysis of 17 Monoclonal Antibodies Approved in China Using Flow Imaging and Light Obscuration.
    Guo S; Yu C; Guo X; Jia Z; Yu X; Yang Y; Guo L; Wang L
    J Pharm Sci; 2022 Apr; 111(4):1164-1171. PubMed ID: 34551350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Backgrounded Membrane Imaging (BMI) for High-Throughput Characterization of Subvisible Particles During Biopharmaceutical Drug Product Development.
    Helbig C; Ammann G; Menzen T; Friess W; Wuchner K; Hawe A
    J Pharm Sci; 2020 Jan; 109(1):264-276. PubMed ID: 30914272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microflow Imaging Analyses Reflect Mechanisms of Aggregate Formation: Comparing Protein Particle Data Sets Using the Kullback-Leibler Divergence.
    Maddux NR; Daniels AL; Randolph TW
    J Pharm Sci; 2017 May; 106(5):1239-1248. PubMed ID: 28159641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.