These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
290 related articles for article (PubMed ID: 3152)
1. A comparative study on the irreversible binding of labeled halothane trichlorofluoromethane, chloroform, and carbon tetrachloride to hepatic protein and lipids in vitro and in vivo. Uehleke H; Werner T Arch Toxicol; 1975 Dec; 34(4):289-308. PubMed ID: 3152 [TBL] [Abstract][Full Text] [Related]
2. A pharmacokinetic model of anaerobic in vitro carbon tetrachloride metabolism. Andersen NJ; Waller CL; Adamovic JB; Thompson DJ; Allis JW; Andersen ME; Simmons JE Chem Biol Interact; 1996 Jun; 101(1):13-31. PubMed ID: 8665616 [TBL] [Abstract][Full Text] [Related]
3. Comparison of covalent binding from halothane metabolism in hepatic microsomes from phenobarbital-induced and hyperthyroid rats. Smith AC; Roberts SM; James RC; Berman LM; Harbison RD Xenobiotica; 1988 Aug; 18(8):991-1001. PubMed ID: 3188577 [TBL] [Abstract][Full Text] [Related]
4. Characterization of the NADPH-dependent covalent binding of [14C]halothane to human liver microsomes: a role for cytochrome P4502E1 at low substrate concentrations. Madan A; Parkinson A Drug Metab Dispos; 1996 Dec; 24(12):1307-13. PubMed ID: 8971135 [TBL] [Abstract][Full Text] [Related]
5. Relationship of oxygen and glutathione in protection against carbon tetrachloride-induced hepatic microsomal lipid peroxidation and covalent binding in the rat. Rationale for the use of hyperbaric oxygen to treat carbon tetrachloride ingestion. Burk RF; Lane JM; Patel K J Clin Invest; 1984 Dec; 74(6):1996-2001. PubMed ID: 6511912 [TBL] [Abstract][Full Text] [Related]
6. Metabolic activation of halothane and its covalent binding to liver endoplasmic proteins in vitro. Uehleke H; Hellmer KH; Tabarelli-Poplawski S Naunyn Schmiedebergs Arch Pharmacol; 1973; 279(1):39-52. PubMed ID: 4147966 [No Abstract] [Full Text] [Related]
7. Metabolic activation of carbon tetrachloride: induction of cytochrome P-450 with phenobarbital or 3-methylcholanthrene and its effect on covalent binding. Frank H; Haussmann HJ; Remmer H Chem Biol Interact; 1982 Jun; 40(2):193-208. PubMed ID: 7083393 [TBL] [Abstract][Full Text] [Related]
8. The formation of diglutathionyl dithiocarbonate as a metabolite of chloroform, bromotrichloromethane, and carbon tetrachloride. Pohl LR; Branchflower RV; Highet RJ; Martin JL; Nunn DS; Monks TJ; George JW; Hinson JA Drug Metab Dispos; 1981; 9(4):334-9. PubMed ID: 6114833 [TBL] [Abstract][Full Text] [Related]
9. Changes in cytochrome P450 molecular species in rat liver in chloroform intoxication. Enosawa S; Nakazawa Y Biochem Pharmacol; 1986 May; 35(9):1555-60. PubMed ID: 3707616 [TBL] [Abstract][Full Text] [Related]
10. Enhanced hepatic microsomal activity by pretreatment of rats with acetone or isopropanol. Sipes IG; Stripp B; Krishna G; Maling HM; Gillette JR Proc Soc Exp Biol Med; 1973 Jan; 142(1):237-40. PubMed ID: 4405141 [No Abstract] [Full Text] [Related]
11. Mechanism of chloroform nephrotoxicity. III. Renal and hepatic microsomal metabolism of chloroform in mice. Smith JH; Hook JB Toxicol Appl Pharmacol; 1984 May; 73(3):511-24. PubMed ID: 6719466 [TBL] [Abstract][Full Text] [Related]
12. Comparative studies on the hepatotoxic actions of chloroform and related halogenomethanes in normal and phenobarbital-pretreated animals. Masuda Y; Yano I; Murano T J Pharmacobiodyn; 1980 Jan; 3(1):53-64. PubMed ID: 6259312 [TBL] [Abstract][Full Text] [Related]
13. Lipid binding of a halothane metabolite. Relationship to lipid peroxidation in vitro. Wood CL; Gandolfi AJ; Van Dyke RA Drug Metab Dispos; 1976; 4(4):305-13. PubMed ID: 8284 [TBL] [Abstract][Full Text] [Related]
14. In vitro studies on irreversible binding of halothane metabolite to microsomes. Van Dyke RA; Wood CL Drug Metab Dispos; 1975; 3(1):51-7. PubMed ID: 234835 [TBL] [Abstract][Full Text] [Related]
15. Nuclear activation of carbon tetrachloride and chloroform. Diaz Gomez MI; Castro JA Res Commun Chem Pathol Pharmacol; 1980 Jan; 27(1):191-4. PubMed ID: 7361000 [TBL] [Abstract][Full Text] [Related]
16. Covalent binding of polychlorinated biphenyls to proteins by reconstituted monooxygenase system containing cytochrome P-450. Shimada T; Imai Y; Sato R Chem Biol Interact; 1981 Dec; 38(1):29-44. PubMed ID: 6799213 [TBL] [Abstract][Full Text] [Related]
17. Cytochrome P-450 and halothane metabolism. Decrease in rat liver microsomal P-450 in vitro. Krieter PA; van Dyke RA Chem Biol Interact; 1983 Jun; 44(3):219-35. PubMed ID: 6872091 [TBL] [Abstract][Full Text] [Related]
18. In vitro studies on the metabolism and covalent binding of [14C]1,1-dichloroethylene by mouse liver, kidney and lung. Okine LK; Gram TE Biochem Pharmacol; 1986 Aug; 35(16):2789-95. PubMed ID: 3741469 [TBL] [Abstract][Full Text] [Related]
19. Time courses of hepatic injuries induced by chloroform and by carbon tetrachloride: comparison of biochemical and histopathological changes. Wang PY; Kaneko T; Tsukada H; Nakano M; Nakajima T; Sato A Arch Toxicol; 1997; 71(10):638-45. PubMed ID: 9332701 [TBL] [Abstract][Full Text] [Related]
20. Mechanism of the microsomal reduction of carbon tetrachloride and halothane. Kubic VL; Anders MW Chem Biol Interact; 1981 Mar; 34(2):201-7. PubMed ID: 7460083 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]