BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31520343)

  • 1. Carbon sources that enable enrichment of 1,4-dioxane-degrading bacteria in landfill leachate.
    Inoue D; Hisada K; Okumura T; Yabuki Y; Yoshida G; Kuroda M; Ike M
    Biodegradation; 2020 Apr; 31(1-2):23-34. PubMed ID: 31520343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effectiveness of tetrahydrofuran at enhancing the 1,4-dioxane degradation ability of activated sludge lacking prior exposure to 1,4-dioxane.
    Inoue D; Hisada K; Ike M
    Water Sci Technol; 2022 Oct; 86(7):1707-1718. PubMed ID: 36240306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial Community Analysis Provides Insights into the Effects of Tetrahydrofuran on 1,4-Dioxane Biodegradation.
    Xiong Y; Mason OU; Lowe A; Zhou C; Chen G; Tang Y
    Appl Environ Microbiol; 2019 Jun; 85(11):. PubMed ID: 30926731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Treatment of 1,4-dioxane-containing water using carriers immobilized with indigenous microorganisms in landfill leachate treatment sludge: A laboratory-scale reactor study.
    Inoue D; Yoshikawa T; Okumura T; Yabuki Y; Ike M
    J Hazard Mater; 2021 Jul; 414():125497. PubMed ID: 33652223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus.
    Inoue D; Tsunoda T; Sawada K; Yamamoto N; Saito Y; Sei K; Ike M
    Biodegradation; 2016 Nov; 27(4-6):277-286. PubMed ID: 27623820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1,4-Dioxane-degrading consortia can be enriched from uncontaminated soils: prevalence of Mycobacterium and soluble di-iron monooxygenase genes.
    He Y; Mathieu J; da Silva MLB; Li M; Alvarez PJJ
    Microb Biotechnol; 2018 Jan; 11(1):189-198. PubMed ID: 28984418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of newly isolated Pseudonocardia sp. N23 with high 1,4-dioxane-degrading ability.
    Yamamoto N; Saito Y; Inoue D; Sei K; Ike M
    J Biosci Bioeng; 2018 May; 125(5):552-558. PubMed ID: 29301721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and Kinetic Characteristics of 1,4-Dioxane-Degrading Bacterial Consortia Containing the Phylum TM7.
    Nam JH; Ventura JS; Yeom IT; Lee Y; Jahng D
    J Microbiol Biotechnol; 2016 Nov; 26(11):1951-1964. PubMed ID: 27470275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enrichment and characterization of a highly efficient tetrahydrofuran-degrading bacterial culture.
    Huang H; Yu H; Qi M; Liu Z; Wang H; Lu Z
    Biodegradation; 2019 Dec; 30(5-6):467-479. PubMed ID: 31463639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of tetrahydrofuran and 1,4-dioxane by soluble diiron monooxygenase in Pseudonocardia sp. strain ENV478.
    Masuda H; McClay K; Steffan RJ; Zylstra GJ
    J Mol Microbiol Biotechnol; 2012; 22(5):312-6. PubMed ID: 23147387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of 1,4-dioxane microbial degradation revealed by 16S rRNA and metatranscriptomic analyses.
    Guan X; Liu F; Wang J; Li C; Zheng X
    Water Sci Technol; 2018 Jan; 77(1-2):123-133. PubMed ID: 29339611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of ether pollutants by Pseudonocardia sp. strain ENV478.
    Vainberg S; McClay K; Masuda H; Root D; Condee C; Zylstra GJ; Steffan RJ
    Appl Environ Microbiol; 2006 Aug; 72(8):5218-24. PubMed ID: 16885268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cometabolic degradation of 1,4-dioxane by a tetrahydrofuran-growing Arthrobacter sp. WN18.
    Wang P; Li F; Wang W; Wang R; Yang Y; Cui T; Liu N; Li M
    Ecotoxicol Environ Saf; 2021 Jul; 217():112206. PubMed ID: 33866286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widespread distribution of soluble di-iron monooxygenase (SDIMO) genes in Arctic groundwater impacted by 1,4-dioxane.
    Li M; Mathieu J; Yang Y; Fiorenza S; Deng Y; He Z; Zhou J; Alvarez PJ
    Environ Sci Technol; 2013 Sep; 47(17):9950-8. PubMed ID: 23909410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct Catalytic Behaviors between Two 1,4-Dioxane-Degrading Monooxygenases: Kinetics, Inhibition, and Substrate Range.
    Li F; Deng D; Li M
    Environ Sci Technol; 2020 Feb; 54(3):1898-1908. PubMed ID: 31877031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of 1,4-dioxane degrading microbial community enriched from uncontaminated soil.
    Tang Y; Wang M; Lee CS; Venkatesan AK; Mao X
    Appl Microbiol Biotechnol; 2023 Feb; 107(2-3):955-969. PubMed ID: 36625913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of 1,4-dioxane by a Flavobacterium.
    Sun B; Ko K; Ramsay JA
    Biodegradation; 2011 Jun; 22(3):651-9. PubMed ID: 21110067
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulatory and inhibitory effects of metals on 1,4-dioxane degradation by four different 1,4-dioxane-degrading bacteria.
    Inoue D; Tsunoda T; Sawada K; Yamamoto N; Sei K; Ike M
    Chemosphere; 2020 Jan; 238():124606. PubMed ID: 31446278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of novel Actinomycetales and the detection of monooxygenases during aerobic 1,4-dioxane biodegradation with uncontaminated and contaminated inocula.
    Ramalingam V; Cupples AM
    Appl Microbiol Biotechnol; 2020 Mar; 104(5):2255-2269. PubMed ID: 31956944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation and characterization of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source.
    Sei K; Miyagaki K; Kakinoki T; Fukugasako K; Inoue D; Ike M
    Biodegradation; 2013 Sep; 24(5):665-74. PubMed ID: 23239086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.