BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31520343)

  • 21. Degradation of 1,4-Dioxane by Xanthobacter sp. YN2.
    Ma F; Wang Y; Yang J; Guo H; Su D; Yu L
    Curr Microbiol; 2021 Mar; 78(3):992-1005. PubMed ID: 33547937
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Investigation of 1,4-dioxane originating from incineration residues produced by incineration of municipal solid waste.
    Fujiwara T; Tamada T; Kurata Y; Ono Y; Kose T; Ono Y; Nishimura F; Ohtoshi K
    Chemosphere; 2008 Mar; 71(5):894-901. PubMed ID: 18191439
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biodegradation of 1,4-dioxane and transformation of related cyclic compounds by a newly isolated Mycobacterium sp. PH-06.
    Kim YM; Jeon JR; Murugesan K; Kim EJ; Chang YS
    Biodegradation; 2009 Jul; 20(4):511-9. PubMed ID: 19085063
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidation of the cyclic ethers 1,4-dioxane and tetrahydrofuran by a monooxygenase in two Pseudonocardia species.
    Sales CM; Grostern A; Parales JV; Parales RE; Alvarez-Cohen L
    Appl Environ Microbiol; 2013 Dec; 79(24):7702-8. PubMed ID: 24096414
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thiamine-Mediated Microbial Interaction between Auxotrophic Rhodococcus ruber ZM07 and Prototrophic Cooperators in the Tetrahydrofuran-Degrading Microbial Community H-1.
    Huang H; Wu H; Qi M; Wang H; Lu Z
    Microbiol Spectr; 2023 Jun; 11(3):e0454122. PubMed ID: 37125924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Impact of aerobic acclimation on the nitrification performance and microbial community of landfill leachate sludge.
    Hira D; Aiko N; Yabuki Y; Fujii T
    J Environ Manage; 2018 Mar; 209():188-194. PubMed ID: 29291488
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of the biodegradation potential of 1,4-dioxane in river, soil and activated sludge samples.
    Sei K; Kakinoki T; Inoue D; Soda S; Fujita M; Ike M
    Biodegradation; 2010 Jul; 21(4):585-91. PubMed ID: 20091334
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of phenol, bisphenol A, and 4-tert-butylphenol from synthetic landfill leachate by vertical flow constructed wetlands.
    A D; Fujii D; Soda S; Machimura T; Ike M
    Sci Total Environ; 2017 Feb; 578():566-576. PubMed ID: 27836343
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction, enrichment and isolation identify a responsive, competitive community of cellulolytic microorganisms from a municipal landfill.
    Co R; Hug LA
    FEMS Microbiol Ecol; 2021 May; 97(5):. PubMed ID: 33930130
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer.
    Botton S; van Harmelen M; Braster M; Parsons JR; Röling WF
    FEMS Microbiol Ecol; 2007 Oct; 62(1):118-30. PubMed ID: 17784862
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation of polyurethane by the microbial consortia enriched from landfill.
    Su T; Zhang T; Liu P; Bian J; Zheng Y; Yuan Y; Li Q; Liang Q; Qi Q
    Appl Microbiol Biotechnol; 2023 Mar; 107(5-6):1983-1995. PubMed ID: 36763115
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hindrance of 1,4-dioxane biodegradation in microcosms biostimulated with inducing or non-inducing auxiliary substrates.
    Li M; Liu Y; He Y; Mathieu J; Hatton J; DiGuiseppi W; Alvarez PJ
    Water Res; 2017 Apr; 112():217-225. PubMed ID: 28161562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolite Cross-Feeding between Rhodococcus ruber YYL and Bacillus cereus MLY1 in the Biodegradation of Tetrahydrofuran under pH Stress.
    Liu Z; Huang H; Qi M; Wang X; Adebanjo OO; Lu Z
    Appl Environ Microbiol; 2019 Oct; 85(19):. PubMed ID: 31375492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced degradation of 1-naphthol in landfill leachate using Arthrobacter sp.
    Hu W; Min X; Li X; Liu J; Yu H; Yang Y; Zhang J; Luo L; Chai L; Zhou Y
    Environ Technol; 2019 Mar; 40(7):835-842. PubMed ID: 29168925
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Isolation and characterization of pure cultures for metabolizing 1,4-dioxane in oligotrophic environments.
    Tesfamariam EG; Ssekimpi D; Hoque SS; Chen H; Howe JD; Zhou C; Shen YX; Tang Y
    Water Sci Technol; 2024 May; 89(9):2440-2456. PubMed ID: 38747959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of active and taxonomically diverse 1,4-dioxane degraders in a full-scale activated sludge system by high-sensitivity stable isotope probing.
    Aoyagi T; Morishita F; Sugiyama Y; Ichikawa D; Mayumi D; Kikuchi Y; Ogata A; Muraoka K; Habe H; Hori T
    ISME J; 2018 Oct; 12(10):2376-2388. PubMed ID: 29899516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unique kinetic properties of phenol-degrading variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture.
    Futamata H; Nagano Y; Watanabe K; Hiraishi A
    Appl Environ Microbiol; 2005 Feb; 71(2):904-11. PubMed ID: 15691947
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 1,4-Dioxane degradation characteristics of Rhodococcus aetherivorans JCM 14343.
    Inoue D; Tsunoda T; Yamamoto N; Ike M; Sei K
    Biodegradation; 2018 Jun; 29(3):301-310. PubMed ID: 29696449
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enrichment and identification of polycyclic aromatic compound-degrading bacteria enriched from sediment samples.
    Long RM; Lappin-Scott HM; Stevens JR
    Biodegradation; 2009 Jul; 20(4):521-31. PubMed ID: 19132328
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Community characterization of anaerobic methyl tert-butyl ether (MTBE)-degrading enrichment cultures.
    Youngster LK; Kerkhof LJ; Häggblom MM
    FEMS Microbiol Ecol; 2010 May; 72(2):279-88. PubMed ID: 20180853
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.