BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

33 related articles for article (PubMed ID: 31520408)

  • 1. Pulsatile operation of a continuous-flow right ventricular assist device (RVAD) to improve vascular pulsatility.
    Ng BC; Kleinheyer M; Smith PA; Timms D; Cohn WE; Lim E
    PLoS One; 2018; 13(4):e0195975. PubMed ID: 29677212
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of Left Ventricular Stroke Work for Rotary Left Ventricular Assist Devices.
    Wu EL; Maw M; Stephens AF; Stevens MC; Fraser JF; Tansley G; Moscato F; Gregory SD
    ASAIO J; 2023 Sep; 69(9):817-826. PubMed ID: 37191479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Evaluation of a Physiologic Control System for Rotary Blood Pumps Based on the Left Ventricular Pressure-Volume Loop.
    Cysyk J; Jhun CS; Newswanger R; Pae W; Izer J; Flory H; Reibson J; Weiss W; Rosenberg G
    ASAIO J; 2022 Jun; 68(6):791-799. PubMed ID: 34860709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Physical Heart Failure Simulation System Utilizing the Total Artificial Heart and Modified Donovan Mock Circulation.
    Crosby JR; DeCook KJ; Tran PL; Betterton E; Smith RG; Larson DF; Khalpey ZI; Burkhoff D; Slepian MJ
    Artif Organs; 2017 Jul; 41(7):E52-E65. PubMed ID: 27935084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A sensorless, physiologic feedback control strategy to increase vascular pulsatility for rotary blood pumps.
    Tan Z; Huo M; Qin K; El-Baz AS; Sethu P; Wang Y; Giridharan GA
    Biomed Signal Process Control; 2023 May; 83():. PubMed ID: 36936779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel closed-loop control system of dual rotary blood pumps in total artificial heart based on the circulatory equilibrium framework: a proof-of-concept in vivo study.
    Yokota S; Uemura K; Unoki T; Matsushita H; Kakuuchi M; Yoshida Y; Sasaki K; Kawada T; Nishikawa T; Kataoka Y; Peterson J; Sunagawa K; Alexander J; Saku K
    IEEE Trans Biomed Eng; 2024 Jul; PP():. PubMed ID: 38949936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of Medical Management to Mitigate Suction Events in Ventricular Assist Device Patients.
    Rocchi M; Fresiello L; Jacobs S; Dauwe D; Droogne W; Meyns B
    ASAIO J; 2022 Jun; 68(6):814-821. PubMed ID: 34524148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study on the hemodynamic effects of different pulsatile working modes of a rotary blood pump using a microfluidic platform that realizes
    Liang L; Wang X; Chen D; Sethu P; Giridharan GA; Wang Y; Wang Y; Qin KR
    Lab Chip; 2024 Apr; 24(9):2428-2439. PubMed ID: 38625094
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simulation tool for mechanical circulatory support device interaction with diseased states.
    Horvath DJ; Horvath DW; Karimov JH; Kuban BD; Miyamoto T; Fukamachi K
    J Artif Organs; 2020 Jun; 23(2):124-132. PubMed ID: 32060658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiologic Data-Driven Iterative Learning Control for Left Ventricular Assist Devices.
    Magkoutas K; Arm P; Meboldt M; Schmid Daners M
    Front Cardiovasc Med; 2022; 9():922387. PubMed ID: 35911509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance and Reliable Operation of Physiological Controllers Under Various Cardiovascular Models: In Silico and In Vitro Study.
    Gwosch T; Magkoutas K; Kaiser D; Schmid Daners M
    ASAIO J; 2024 Jun; 70(6):485-494. PubMed ID: 38373197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A New Cardiovascular Mock Loop Driven by Novel Active Capacitance in Normal and Abnormal Conditions.
    Iscan M; Yesildirek A
    Appl Bionics Biomech; 2023; 2023():2866637. PubMed ID: 37928744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starling Hall.
    Iowa Med J; 1855 May; 2(4):312-313. PubMed ID: 37677386
    [No Abstract]   [Full Text] [Related]  

  • 14. Control Strategy Design of a Microblood Pump Based on Heart-Rate Feedback.
    Jing T; Xin T; Wang F; Zhang Z; Zhou L
    Micromachines (Basel); 2022 Feb; 13(3):. PubMed ID: 35334650
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Estimation of Left Ventricular Volume from Electric Field Modeling.
    Korn L; Dahlmanns S; Leonhardt S; Walter M
    J Electr Bioimpedance; 2021 Jan; 12(1):125-134. PubMed ID: 35069948
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Starling-like total work controller for rotary blood pumps: An in vitro evaluation.
    Wu EL; Stevens MC; Nestler F; Pauls JP; Bradley AP; Tansley G; Fraser JF; Gregory SD
    Artif Organs; 2020 Mar; 44(3):E40-E53. PubMed ID: 31520408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Vitro Evaluation of an Immediate Response Starling-Like Controller for Dual Rotary Blood Pumps.
    Stephens AF; Stevens MC; Gregory SD; Kleinheyer M; Salamonsen RF
    Artif Organs; 2017 Oct; 41(10):911-922. PubMed ID: 28741664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Haemodynamic Effect of Left Atrial and Left Ventricular Cannulation with a Rapid Speed Modulated Rotary Blood Pump During Rest and Exercise: Investigation in a Numerical Cardiorespiratory Model.
    Wu EL; Fresiello L; Kleinhyer M; Meyns B; Fraser JF; Tansley G; Gregory SD
    Cardiovasc Eng Technol; 2020 Aug; 11(4):350-361. PubMed ID: 32557185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro evaluation of an adaptive Starling-like controller for dual rotary ventricular assist devices.
    Stephens A; Gregory S; Tansley G; Busch A; Salamonsen R
    Artif Organs; 2019 Nov; 43(11):E294-E307. PubMed ID: 31188476
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.