These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31520743)

  • 1. Auditory cortical generators of the Frequency Following Response are modulated by intermodal attention.
    Hartmann T; Weisz N
    Neuroimage; 2019 Dec; 203():116185. PubMed ID: 31520743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural generators of the frequency-following response elicited to stimuli of low and high frequency: A magnetoencephalographic (MEG) study.
    Gorina-Careta N; Kurkela JLO; Hämäläinen J; Astikainen P; Escera C
    Neuroimage; 2021 May; 231():117866. PubMed ID: 33592244
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attentional Modulation of the Cortical Contribution to the Frequency-Following Response Evoked by Continuous Speech.
    Schüller A; Schilling A; Krauss P; Rampp S; Reichenbach T
    J Neurosci; 2023 Nov; 43(44):7429-7440. PubMed ID: 37793908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cortical Correlates of the Auditory Frequency-Following and Onset Responses: EEG and fMRI Evidence.
    Coffey EBJ; Musacchia G; Zatorre RJ
    J Neurosci; 2017 Jan; 37(4):830-838. PubMed ID: 28123019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subcortical sources dominate the neuroelectric auditory frequency-following response to speech.
    Bidelman GM
    Neuroimage; 2018 Jul; 175():56-69. PubMed ID: 29604459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oscillatory Entrainment of the Frequency-following Response in Auditory Cortical and Subcortical Structures.
    Coffey EBJ; Arseneau-Bruneau I; Zhang X; Baillet S; Zatorre RJ
    J Neurosci; 2021 May; 41(18):4073-4087. PubMed ID: 33731448
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical contributions to the auditory frequency-following response revealed by MEG.
    Coffey EB; Herholz SC; Chepesiuk AM; Baillet S; Zatorre RJ
    Nat Commun; 2016 Mar; 7():11070. PubMed ID: 27009409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards an optimal paradigm for simultaneously recording cortical and brainstem auditory evoked potentials.
    Bidelman GM
    J Neurosci Methods; 2015 Feb; 241():94-100. PubMed ID: 25561397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcortical correlates of auditory perceptual organization in humans.
    Yamagishi S; Otsuka S; Furukawa S; Kashino M
    Hear Res; 2016 Sep; 339():104-11. PubMed ID: 27371867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-dependent fine structure in the frequency-following response: The byproduct of multiple generators.
    Tichko P; Skoe E
    Hear Res; 2017 May; 348():1-15. PubMed ID: 28137699
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence against attentional state modulating scalp-recorded auditory brainstem steady-state responses.
    Varghese L; Bharadwaj HM; Shinn-Cunningham BG
    Brain Res; 2015 Nov; 1626():146-64. PubMed ID: 26187756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oscillatory alpha modulations in right auditory regions reflect the validity of acoustic cues in an auditory spatial attention task.
    Weisz N; Müller N; Jatzev S; Bertrand O
    Cereb Cortex; 2014 Oct; 24(10):2579-90. PubMed ID: 23645711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multichannel recordings of the human brainstem frequency-following response: scalp topography, source generators, and distinctions from the transient ABR.
    Bidelman GM
    Hear Res; 2015 May; 323():68-80. PubMed ID: 25660195
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency Selectivity of Persistent Cortical Oscillatory Responses to Auditory Rhythmic Stimulation.
    Pesnot Lerousseau J; Trébuchon A; Morillon B; Schön D
    J Neurosci; 2021 Sep; 41(38):7991-8006. PubMed ID: 34301825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Musical training orchestrates coordinated neuroplasticity in auditory brainstem and cortex to counteract age-related declines in categorical vowel perception.
    Bidelman GM; Alain C
    J Neurosci; 2015 Jan; 35(3):1240-9. PubMed ID: 25609638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deviance-Related Responses along the Auditory Hierarchy: Combined FFR, MLR and MMN Evidence.
    Shiga T; Althen H; Cornella M; Zarnowiec K; Yabe H; Escera C
    PLoS One; 2015; 10(9):e0136794. PubMed ID: 26348628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cochlear activity in silent cue-target intervals shows a theta-rhythmic pattern and is correlated to attentional alpha and theta modulations.
    Köhler MHA; Demarchi G; Weisz N
    BMC Biol; 2021 Mar; 19(1):48. PubMed ID: 33726746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential sensitivity to changes in pitch acceleration in the auditory brainstem and cortex.
    Krishnan A; Suresh CH; Gandour JT
    Brain Lang; 2017 Jun; 169():22-27. PubMed ID: 28237533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two Sides of the Same Coin: Distinct Sub-Bands in the α Rhythm Reflect Facilitation and Suppression Mechanisms during Auditory Anticipatory Attention.
    ElShafei HA; Bouet R; Bertrand O; Bidet-Caulet A
    eNeuro; 2018; 5(4):. PubMed ID: 30225355
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective modulation of auditory cortical alpha activity in an audiovisual spatial attention task.
    Frey JN; Mainy N; Lachaux JP; Müller N; Bertrand O; Weisz N
    J Neurosci; 2014 May; 34(19):6634-9. PubMed ID: 24806688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.