These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 31520913)
1. Char and tar formation during hydrothermal gasification of dewatered sewage sludge in subcritical and supercritical water: Influence of reaction parameters and lumped reaction kinetics. Wang C; Zhu W; Zhang H; Chen C; Fan X; Su Y Waste Manag; 2019 Dec; 100():57-65. PubMed ID: 31520913 [TBL] [Abstract][Full Text] [Related]
2. Suppression of tar and char formation in supercritical water gasification of sewage sludge by additive addition. Wang C; Wu C; Hornung U; Zhu W; Dahmen N Chemosphere; 2021 Jan; 262():128412. PubMed ID: 33182157 [TBL] [Abstract][Full Text] [Related]
3. Characteristics of the microwave pyrolysis and microwave CO Chun YN; Jeong BR Environ Technol; 2018 Oct; 39(19):2484-2494. PubMed ID: 28726561 [TBL] [Abstract][Full Text] [Related]
4. Influence of the reactant carbon-hydrogen-oxygen composition on the key products of the direct gasification of dewatered sewage sludge in supercritical water. Gong M; Zhu W; Fan Y; Zhang H; Su Y Bioresour Technol; 2016 May; 208():81-86. PubMed ID: 26922316 [TBL] [Abstract][Full Text] [Related]
5. Char derived from sewage sludge of hydrothermal carbonization and supercritical water gasification: Comparison of the properties of two chars. Wang C; Zhu W; Fan X Waste Manag; 2021 Mar; 123():88-96. PubMed ID: 33571833 [TBL] [Abstract][Full Text] [Related]
6. Polycyclic aromatic hydrocarbon formation during the gasification of sewage sludge in sub- and supercritical water: Effect of reaction parameters and reaction pathways. Gong M; Wang Y; Fan Y; Zhu W; Zhang H; Su Y Waste Manag; 2018 Feb; 72():287-295. PubMed ID: 29153339 [TBL] [Abstract][Full Text] [Related]
7. Synergistic effect of water content and composite conditioner of Fenton's reagent combined with red mud on the enhanced hydrogen production from sludge pyrolysis. Yang J; Song J; Liang S; Guan R; Shi Y; Yu W; Zhu S; Fan W; Hou H; Hu J; Deng H; Xiao B Water Res; 2017 Oct; 123():378-387. PubMed ID: 28686940 [TBL] [Abstract][Full Text] [Related]
8. Partial oxidative gasification of municipal sludge in subcritical and supercritical water. Xu ZR; Zhu W; Htar SH Environ Technol; 2012 Jun; 33(10-12):1217-23. PubMed ID: 22856292 [TBL] [Abstract][Full Text] [Related]
9. Thermal processing of sewage sludge by drying, pyrolysis, gasification and combustion. Stolarek P; Ledakowicz S Water Sci Technol; 2001; 44(10):333-9. PubMed ID: 11794675 [TBL] [Abstract][Full Text] [Related]
10. Elevating clean energy through sludge: A comprehensive study of hydrothermal carbonization and co-gasification technologies. Zhang X; Shi S; Men X; Hu D; Yang Q; Zhang L J Environ Manage; 2024 Oct; 369():122388. PubMed ID: 39232325 [TBL] [Abstract][Full Text] [Related]
11. Hydrogen production and phosphorus recovery via supercritical water gasification of sewage sludge in a batch reactor. Weijin G; Zizheng Z; Yue L; Qingyu W; Lina G Waste Manag; 2019 Aug; 96():198-205. PubMed ID: 31376965 [TBL] [Abstract][Full Text] [Related]
12. Bio-syngas production with low concentrations of CO2 and CH4 from microwave-induced pyrolysis of wet and dried sewage sludge. Domínguez A; Fernández Y; Fidalgo B; Pis JJ; Menéndez JA Chemosphere; 2008 Jan; 70(3):397-403. PubMed ID: 17692361 [TBL] [Abstract][Full Text] [Related]
13. Supercritical water gasification of sewage sludge: gas production and phosphorus recovery. Acelas NY; López DP; Brilman DW; Kersten SR; Kootstra AM Bioresour Technol; 2014 Dec; 174():167-75. PubMed ID: 25463796 [TBL] [Abstract][Full Text] [Related]
14. Study on the combined sewage sludge pyrolysis and gasification process: mass and energy balance. Wang Z; Chen D; Song X; Zhao L Environ Technol; 2012 Dec; 33(22-24):2481-8. PubMed ID: 23437644 [TBL] [Abstract][Full Text] [Related]
15. Simulation study on comprehensive thermal treatment of oil sludge based on Aspen plus. Gong Z; Chu Z; Zhu L; Li X; Han Y; Guo J; Shang P; Zheng W; Ding J; Tian M J Environ Sci Health A Tox Hazard Subst Environ Eng; 2022; 57(7):552-566. PubMed ID: 35670532 [TBL] [Abstract][Full Text] [Related]
16. Experimental study on gasification of oil sludge with steam and its char characteristic. Chu Z; Gong Z; Wang Z; Zhang H; Liu L; Wu J; Wang J J Hazard Mater; 2021 Aug; 416():125713. PubMed ID: 34492773 [TBL] [Abstract][Full Text] [Related]
17. Influence of reaction parameters on the fate of nitrogen during the supercritical water gasification of dewatered sewage sludge. Gong M; Wang L; Hu J; Feng A; Wang M; Fan Y Waste Manag; 2022 Sep; 151():28-38. PubMed ID: 35926279 [TBL] [Abstract][Full Text] [Related]
18. Supercritical water gasification of sewage sludge in continuous reactor. Amrullah A; Matsumura Y Bioresour Technol; 2018 Feb; 249():276-283. PubMed ID: 29054056 [TBL] [Abstract][Full Text] [Related]
19. Effect of Hydrogen Separation on Coal Char Gasification with Subcritical Steam Using a Calcium-Based CO Kumabe K; Hasegawa Y; Moritomi H ACS Omega; 2020 Jan; 5(1):236-242. PubMed ID: 31956770 [TBL] [Abstract][Full Text] [Related]
20. Review of inventory data for the thermal treatment of sewage sludge. Chang H; Zhao Y; Zhao S; Damgaard A; Christensen TH Waste Manag; 2022 Jun; 146():106-118. PubMed ID: 35588648 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]