These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 31521070)
1. Direct diabatization and analytic representation of coupled potential energy surfaces and couplings for the reactive quenching of the excited Shu Y; Kryven J; Sampaio de Oliveira-Filho AG; Zhang L; Song GL; Li SL; Meana-Pañeda R; Fu B; Bowman JM; Truhlar DG J Chem Phys; 2019 Sep; 151(10):104311. PubMed ID: 31521070 [TBL] [Abstract][Full Text] [Related]
2. Direct calculation of coupled diabatic potential-energy surfaces for ammonia and mapping of a four-dimensional conical intersection seam. Nangia S; Truhlar DG J Chem Phys; 2006 Mar; 124(12):124309. PubMed ID: 16599676 [TBL] [Abstract][Full Text] [Related]
3. Full-dimensional three-state potential energy surfaces and state couplings for photodissociation of thiophenol. Zhang L; Truhlar DG; Sun S J Chem Phys; 2019 Oct; 151(15):154306. PubMed ID: 31640376 [TBL] [Abstract][Full Text] [Related]
4. Diabatic Molecular Orbitals, Potential Energies, and Potential Energy Surface Couplings by the 4-fold Way for Photodissociation of Phenol. Xu X; Yang KR; Truhlar DG J Chem Theory Comput; 2013 Aug; 9(8):3612-25. PubMed ID: 26584115 [TBL] [Abstract][Full Text] [Related]
5. Full-dimensional ground- and excited-state potential energy surfaces and state couplings for photodissociation of thioanisole. Li SL; Truhlar DG J Chem Phys; 2017 Feb; 146(6):064301. PubMed ID: 28201879 [TBL] [Abstract][Full Text] [Related]
6. Permutationally Restrained Diabatization by Machine Intelligence. Shu Y; Varga Z; Sampaio de Oliveira-Filho AG; Truhlar DG J Chem Theory Comput; 2021 Feb; 17(2):1106-1116. PubMed ID: 33405927 [TBL] [Abstract][Full Text] [Related]
7. The requisite electronic structure theory to describe photoexcited nonadiabatic dynamics: nonadiabatic derivative couplings and diabatic electronic couplings. Subotnik JE; Alguire EC; Ou Q; Landry BR; Fatehi S Acc Chem Res; 2015 May; 48(5):1340-50. PubMed ID: 25932499 [TBL] [Abstract][Full Text] [Related]
8. A diabatic representation including both valence nonadiabatic interactions and spin-orbit effects for reaction dynamics. Valero R; Truhlar DG J Phys Chem A; 2007 Sep; 111(35):8536-51. PubMed ID: 17691756 [TBL] [Abstract][Full Text] [Related]
9. Diabatic States of Molecules. Shu Y; Varga Z; Kanchanakungwankul S; Zhang L; Truhlar DG J Phys Chem A; 2022 Feb; 126(7):992-1018. PubMed ID: 35138102 [TBL] [Abstract][Full Text] [Related]
10. Two-state diabatic potential energy surfaces of ClH Yin Z; Guan Y; Fu B; Zhang DH Phys Chem Chem Phys; 2019 Sep; 21(36):20372-20383. PubMed ID: 31498342 [TBL] [Abstract][Full Text] [Related]
11. Nonintuitive Diabatic Potential Energy Surfaces for Thioanisole. Li SL; Xu X; Hoyer CE; Truhlar DG J Phys Chem Lett; 2015 Sep; 6(17):3352-9. PubMed ID: 26267410 [TBL] [Abstract][Full Text] [Related]
12. Perspective on Diabatic Models of Chemical Reactivity as Illustrated by the Gas-Phase S(N)2 Reaction of Acetate Ion with 1,2-Dichloroethane. Valero R; Song L; Gao J; Truhlar DG J Chem Theory Comput; 2009 Jan; 5(1):1-22. PubMed ID: 20047005 [TBL] [Abstract][Full Text] [Related]
13. Quasi-diabatic representations of adiabatic potential energy surfaces coupled by conical intersections including bond breaking: a more general construction procedure and an analysis of the diabatic representation. Zhu X; Yarkony DR J Chem Phys; 2012 Dec; 137(22):22A511. PubMed ID: 23249048 [TBL] [Abstract][Full Text] [Related]
14. Semiclassical Multistate Dynamics for Six Coupled Akher FB; Shu Y; Varga Z; Truhlar DG J Chem Theory Comput; 2023 Jul; 19(14):4389-4401. PubMed ID: 37441750 [TBL] [Abstract][Full Text] [Related]
15. Enabling complete multichannel nonadiabatic dynamics: A global representation of the two-channel coupled, 1,2 Wang Y; Guan Y; Guo H; Yarkony DR J Chem Phys; 2021 Mar; 154(9):094121. PubMed ID: 33685133 [TBL] [Abstract][Full Text] [Related]
16. Semiclassical Trajectory Studies of Reactive and Nonreactive Scattering of OH(A Han S; de Oliveira-Filho AGS; Shu Y; Truhlar DG; Guo H Chemphyschem; 2022 Apr; 23(8):e202200039. PubMed ID: 35179813 [TBL] [Abstract][Full Text] [Related]
17. Global diabatic potential energy surfaces and quantum dynamical studies for the Li(2p) + H2(X(1)Σ(+)g) → LiH(X(1)Σ(+)) + H reaction. He D; Yuan J; Li H; Chen M Sci Rep; 2016 Apr; 6():25083. PubMed ID: 27125781 [TBL] [Abstract][Full Text] [Related]
18. Internal conversion and intersystem crossing dynamics based on coupled potential energy surfaces with full geometry-dependent spin-orbit and derivative couplings. Nonadiabatic photodissociation dynamics of NH Wang Y; Guo H; Yarkony DR Phys Chem Chem Phys; 2022 Jun; 24(24):15060-15067. PubMed ID: 35696936 [TBL] [Abstract][Full Text] [Related]
19. Representation of coupled adiabatic potential energy surfaces using neural network based quasi-diabatic Hamiltonians: 1,2 Guan Y; Zhang DH; Guo H; Yarkony DR Phys Chem Chem Phys; 2019 Jul; 21(26):14205-14213. PubMed ID: 30523350 [TBL] [Abstract][Full Text] [Related]
20. Model space diabatization for quantum photochemistry. Li SL; Truhlar DG; Schmidt MW; Gordon MS J Chem Phys; 2015 Feb; 142(6):064106. PubMed ID: 25681886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]