These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 31521221)

  • 1. Genomic and epigenomic bases of transgressive segregation - New breeding paradigm for novel plant phenotypes.
    de Los Reyes BG
    Plant Sci; 2019 Nov; 288():110213. PubMed ID: 31521221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel and Transgressive Salinity Tolerance in Recombinant Inbred Lines of Rice Created by Physiological Coupling-Uncoupling and Network Rewiring Effects.
    Pabuayon ICM; Kitazumi A; Cushman KR; Singh RK; Gregorio GB; Dhatt B; Zabet-Moghaddam M; Walia H; de Los Reyes BG
    Front Plant Sci; 2021; 12():615277. PubMed ID: 33708229
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the classics: the unifying concepts of transgressive segregation, inbreeding depression and heterosis and their central relevance for crop breeding.
    Mackay IJ; Cockram J; Howell P; Powell W
    Plant Biotechnol J; 2021 Jan; 19(1):26-34. PubMed ID: 32996672
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transgressive Hybrids as Hopeful Monsters.
    Dittrich-Reed DR; Fitzpatrick BM
    Evol Biol; 2013 Jun; 40(2):310-315. PubMed ID: 23687396
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoding the plant genome: From epigenome to 3D organization.
    Ouyang W; Cao Z; Xiong D; Li G; Li X
    J Genet Genomics; 2020 Aug; 47(8):425-435. PubMed ID: 33023833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Natural genetic variation and hybridization in plants.
    Henderson IR; Salt DE
    J Exp Bot; 2017 Nov; 68(20):5415-5417. PubMed ID: 29161427
    [No Abstract]   [Full Text] [Related]  

  • 7. Next generation sequencing and omics in cucumber (Cucumis sativus L.) breeding directed research.
    Pawełkowicz M; Zieliński K; Zielińska D; Pląder W; Yagi K; Wojcieszek M; Siedlecka E; Bartoszewski G; Skarzyńska A; Przybecki Z
    Plant Sci; 2016 Jan; 242():77-88. PubMed ID: 26566826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybridization Outcomes Have Strong Genomic and Environmental Contingencies.
    Brice C; Zhang Z; Bendixsen D; Stelkens R
    Am Nat; 2021 Sep; 198(3):E53-E67. PubMed ID: 34403309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transgressive segregation, adaptation and speciation.
    Rieseberg LH; Archer MA; Wayne RK
    Heredity (Edinb); 1999 Oct; 83 ( Pt 4)():363-72. PubMed ID: 10583537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Translational genomics for plant breeding with the genome sequence explosion.
    Kang YJ; Lee T; Lee J; Shim S; Jeong H; Satyawan D; Kim MY; Lee SH
    Plant Biotechnol J; 2016 Apr; 14(4):1057-69. PubMed ID: 26269219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2015: A landmark in plant genetics.
    Delseny M
    Plant Sci; 2016 Jan; 242():1-2. PubMed ID: 26566819
    [No Abstract]   [Full Text] [Related]  

  • 12. The genetic architecture necessary for transgressive segregation is common in both natural and domesticated populations.
    Rieseberg LH; Widmer A; Arntz AM; Burke JM
    Philos Trans R Soc Lond B Biol Sci; 2003 Jun; 358(1434):1141-7. PubMed ID: 12831480
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of Adaptive Plant Architecture to Transgressive Salinity Tolerance in Recombinant Inbred Lines of Rice: Molecular Mechanisms Based on Transcriptional Networks.
    Pabuayon ICM; Kitazumi A; Gregorio GB; Singh RK; de Los Reyes BG
    Front Genet; 2020; 11():594569. PubMed ID: 33193743
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Properties Responsible for the Transgressive Segregation of Days to Heading in Rice.
    Koide Y; Sakaguchi S; Uchiyama T; Ota Y; Tezuka A; Nagano AJ; Ishiguro S; Takamure I; Kishima Y
    G3 (Bethesda); 2019 May; 9(5):1655-1662. PubMed ID: 30894452
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic distance between species predicts novel trait expression in their hybrids.
    Stelkens R; Seehausen O
    Evolution; 2009 Apr; 63(4):884-97. PubMed ID: 19220450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Towards development of new ornamental plants: status and progress in wide hybridization.
    Kuligowska K; Lütken H; Müller R
    Planta; 2016 Jul; 244(1):1-17. PubMed ID: 26969022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant Breeding Goes Microbial.
    Wei Z; Jousset A
    Trends Plant Sci; 2017 Jul; 22(7):555-558. PubMed ID: 28592368
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding.
    van Eeuwijk FA; Bustos-Korts D; Millet EJ; Boer MP; Kruijer W; Thompson A; Malosetti M; Iwata H; Quiroz R; Kuppe C; Muller O; Blazakis KN; Yu K; Tardieu F; Chapman SC
    Plant Sci; 2019 May; 282():23-39. PubMed ID: 31003609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomics-based strategies for the use of natural variation in the improvement of crop metabolism.
    Scossa F; Brotman Y; de Abreu E Lima F; Willmitzer L; Nikoloski Z; Tohge T; Fernie AR
    Plant Sci; 2016 Jan; 242():47-64. PubMed ID: 26566824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current advances in chickpea genomics: applications and future perspectives.
    Jha UC
    Plant Cell Rep; 2018 Jul; 37(7):947-965. PubMed ID: 29860584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.